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Executive summary 

This document constitutes the Algorithm Theoretical Basis Document (ATBD) as a result of 

task 3 described in the proposal of the ESA YIPEEO project. This document contains the 

theoretical basis of the models used during task 3: 

• 3.1 Sensitivity of remote sensing observations to yield 

o Assessment of the sensitivity to field management practices (e.g., ploughing) 

o Assessing the dependence of the sensitivity to crop yield on the crop type, 

weather conditions, the time-of-season, etc. 

• 3.2 Crop yield forecast generation using different input data from D2.1 and different 

models 

o Extreme Gradient Boosting, Random Forest 

o Process-based models for Polkovice (CZR) 

 

The ATBD document is divided into three chapters describing data preparation, tasks 3.1, and 

3.2. Task 3.3 is described in D3.2 PVR.  
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1 Data 

 Crop yield data 

The available crop yield data is described in D2.2: Database description. Since there were some 

updates since the deliverable of D2.2, we are going to briefly describe the used crop yield data 

here. Most crop yield data is available in the Czech Republic (Fig. 1). There are three crops 

with more than 250 observations (maize, spring barley, and winter wheat). Of these three 

crops, only winter wheat data was available for all other countries too. As the amount of 

training data is key for machine learning, we decided to focus on the three crops with the most 

data. Maize and spring barley were trained and tested in Czechia only. Winter wheat, on the 

other hand, trained in Czechia and tested in the all regions (more details about the testing and 

training in Chapter 3.2.4). 

In addition, we have just received the field-scale data from the Spain fields. This contains a 

total number of 11587 observations, among others of winter barley (5210 observations), 

winter wheat (3071), and maize (2185). Unfortunately, the data was obtained too late to 

include it in the modelling for this deliverable but will be used for the upcoming tasks.  

 

Fig. 1: Data availability per country of all crops with more than 50 observations. 
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 Predictor datasets 

The data preparation of the predictors followed a similar workflow for all datasets (Fig. 2). The 

datasets were accessed from a datacube (Sentinel-1 data from the EODC datacube, Sentinel-

2 from Microsoft’s Planetary Computer and ECOSTRESS from NASA’s Earthdata).  The data was 

extracted and resampled to the field polygons of the fields where we have crop data. Per field 

polygon and time step, we calculated the median and the standard deviation of all satellite 

observations lying within it. Hence, for each field we obtained several time-series per dataset 

(e.g. for Sentinel-2 L2A one per band). The considered timespan was 2016-2022. To get more 

reliable data, these time-series required post-processing which will be described in the 

following subchapters. As a last step before the modelling, the predictors were temporally 

resampled to monthly and biweekly observations. Starting from the harvest date the first lead 

time (LT1) included the last month or two-week period before the harvest date. LT2 then 

includes the month or two-week period before that and so on until 4 months before the 

harvest.  

 

Fig. 2: Workflow of the data extraction on the example of Sentinel-2 data. First image on the left from 
Mahecha et al. (2020) 

1.2.1 Sentinel-1 

Sentinel-1 data for the years 2016-2023 was pre-processed by TUW RS using the software 

SNAP8 and software packages developed by the TUW RS group. The processing workflow 

consists of the following steps: 

1)Apply precise orbit data 
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2)Border-noise removal 

3)Radiometric calibration 

4)Radiometric terrain-flattening 

5)Range-Doppler terrain correction 

 

For steps 4) and 5) the 30 m CopernicusDEM (Digital Elevation Model) was used. To extract 

time series on field level from the pre-processed Sentinel-1 data, several further processing 

steps were performed to mitigate the impact of the viewing geometry and undesired objects 

within or near the fields. In a first step, an incidence angle normalization to 40° was performed, 

similar to (Bauer-Marschallinger et al., 2021). Afterwards, all pixels below a standard deviation 

of 5dB within one year were filtered out as they are typically stemming from radar shadow 

pixels or are no crop pixels. Finally, the cross-ratio was calculated by subtracting VV and VH 

polarized backscatter. 

 

1.2.2 Sentinel-2 

Sentinel-2 L2A data was accessed from the Microsoft Planetary Computer. Data was retrieved 

for the bands 2-8, 11, 12, and the scene classification layer (SCL). Bands 1, 9, and 10 were not 

considered, as they are not required for the calculation of the used vegetation indices (see 

below), have a lower spatial resolution (60m compared to 10 and 20 for the remaining bands) 

(Son et al., 2022), and are affected by atmospheric disturbances caused by aerosols and water 

vapour (Perich et al., 2023). The bands were directly extracted on their native resolution. We 

used a total of 485 Sentinel-2 images in the Czech sites, 274 in the Netherlands, 307 in 

Romania, and 900 for Ukraine. The extracted data required two main steps for the post-

processing: cloud masking and adjusting for the new dynamic range shifting since January 

2022. The cloud masking was done using the SCL. The SCL classifies all Sentinel-2 L2A images 

into different classes from clouds, over cloud and topographic shadows to vegetation (see Fig. 

3).  Only pixels which are classified as vegetation, non-vegetated, and water were used for 
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further processing. All other pixels were masked. Pixels classified as water were included in 

the analysis to not lose information on fields that are extensively irrigated (Zhen et al., 2023).  

 

Fig. 3: Example of a Sentinel-2 L2A image (true colour composite on the left) over the Rostenice site and 
its scene classification on the right. 

The dynamic range shifting since 25 January 2022 led to a higher offset in the data. From all 

observations since then an offset of 1000 was subtracted from the observations to have it in 

the same value range as before (Siesto 2022). As a last step, outliers were removed, as there 

were still some unrealistically high values observed after cloud masking (Fig. 4).  

Derived from the individual bands we calculated four indices: Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water 

Index (NDWI), and the Normalized Multiband Drought Index (NMDI). The used formulas for 

those are: 

NDVI = (B8-B4)/(B8+B4) 

EVI = 2.5*(B8-B4)/((B8+6*B4-7.5*B2)+1) 

NDWI = (B8-B12)/(B8+B12) 

NMDI = (B8-(B11-B12))/(B8+(B11-B12)) 

More complex estimations like deriving biomass or leaf area index from the S2 bands were 

not yet included in this part of the project due to time constraints. However, for the upcoming 

tasks this could be considered.  
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Fig. 4: Example of a Sentinel-2 L2A Band 2 time-series for a selected field of the Rostenice farm in Czech 
Republic. It shows the originally extracted time-series in blue, the cloud masked data in orange, and 
the final data in green. 

1.2.3 ECOSTRESS 

ECOSTRESS land surface temperature (LST) data, its uncertainties, and cloud cover layer were 

accessed from NASA´s Earthdata portal for the fields of Rostenice farm only. Data is available 

since June 2018 (Fisher et al., 2020). To start with a full growing season, data was extracted 

starting in January 2019. The temporal resolution of the data is varying. For many days there 

are several observations available, but sometimes there are only observations every few days. 

In total, we used 1481 observations between January 2019 and December 2022, hence, on 

average one observation per day. This data was still very noisy (Fig. 4) as many observations 

are not usable because of cloud cover or other disturbances. In addition, the observation time 

varies a lot. There are observations at every time of the day and the night. This makes it hard 

to compare several days with each other due to the diurnal temperature cycle. To obtain a 
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less noisy dataset we decided to use various steps of post-processing: excluding unrealistic 

values (values below -20°C and above 40°C), checking the cloud mask of ECOSTRESS, and only 

use data from a similar time of the day (11 am to 5 pm). The resulting time-series is shown in 

Fig. 4 (right plot). The data still seemed to have some issues like abrupt changes of the 

temperature within some days and temperatures below 0°C in summer. This could be related 

to cloud cover. Hence, we used the ECOSTRESS cloud cover mask (ECO2CLD). This provides a 

binary flag if the observations are likely affected by clouds. However, the cloud cover mask 

did not help to improve this. The ECOSTRESS cloud mask is on for most of the observations, 

which would leave us with almost no data (Fig. 5).  

 

Fig. 5: ECOSTRESS land surface temperature time-series for a selected field of the Rostenice farm in 
Czech Republic. The left plot shows all observations while the right plot shows the cleaned time-series 
and the cloud flag in orange. 

1.2.4 Further dataset 

The last predictor we used for the field-scale crop yield forecasts is the crop type of the 

antecedent year. This information is included since the soil quality is impacted by the grown 

crop type which can affect the crop yields of the upcoming year (Gebeltová et al., 2020). For 

most available fields the crop type of the antecedent year was not defined in our database, 

though.  
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In the YIPEEO database are several further datasets, which have not been used for this task. 

The meteorological data ERA5-Land (spatial resolution of 0.1°) and C3S Seasonal forecasts (1°) 

were not used for this task because of the rather coarse spatial resolution. The same applies 

to Sentinel-3 SLSTR LST (0.01°) and Sentinel-5 TROPOMI Solar-induced chlorophyll 

fluorescence (~0.05°). These datasets will be used for the upscaled forecasts on a regional 

scale. PRISMA and EnMAP have not yet been obtained but will be updated in the modelling 

when we get the data.    
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2 Sensitivity of remote sensing observations to yield 

 Sensitivity of EO variables to field management practices 

In a first step, the sensitivity of EO variables to field management practices was assessed. The 

basis of the analysis is a comprehensive data record of exact dates of field management 

practices including different types of ploughing (spring ploughing, vibroflexen, winter 

ploughing), as well as manure events. The different types of ploughing are hereby connected 

to different agricultural machinery and result in different soil conditions on the fields. The data 

set includes field management events from multiple fields in the Netherlands for the time 

period 2016 - 2023. In addition to the reference data, S1 and S2 time series as well as data 

from a weather station was used.  For Sentinel-2 however, the number of observations was 

too low to detect short term dynamics. On average, only 12 cloud-free observations per year 

were available, leading to high temporal distances between the closest observation before 

and after a field management event. For this reason, we excluded Sentinel-2 data from our 

analysis. 

First, the signal changes after field management events were extracted from the S1 time series 

by calculating the difference between the closest observation before the event and the closest 

observation after the event. Figure 8 shows a scatter plot of the differences in VV and VH 

polarized backscatter for the four different field management practices. As the scatter plot 

indicates, winter ploughing has the most distinct pattern in Sentinel-1 time series with an 

average increase of ~2.8dB in VH and 2.3 dB in VV. In contrast, no consistent pattern is 

observed for spring ploughing with some fields showing an increase in VV and VH after 

ploughing and some a decrease. Vibroflexen and manure are associated with no significant 

changes and show in most cases a minor increase of around 1dB in VV and VH. In almost all 

cases, the increase in VH polarized backscatter is more profound than for VV polarized 

backscatter. To better understand the differences between spring and winter ploughing, daily 

temperature and precipitation data from a weather station close to the fields was added to 

the analysis (data source: 

https://catalogue.ceda.ac.uk/uuid/5a94b3130e5e49b2a5a69afdc5493a4f). These data were 

plotted next to the backscatter time series. Figure 6 shows the backscatter time series and the 
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daily temperature for a spring barley field in the 2022. As the plot illustrates, at the time of 

winter ploughing the temperatures drop below 0° causing a freezing of the soil and a 

subsequent decrease of backscatter. Tilling in combination with warmer temperatures results 

afterwards in significant increase of VV and VH backscatter. The same can be observed for the 

other winter ploughing events in 2022. This indicates that the soil state is a major co-founding 

factor for the sensitivity of backscatter to farming practices. In Figure 7, the precipitation data 

is plotted next to the backscatter time series. The precipitation sums indicate that the 

backscatter dynamics in the beginning of April are most likely related to changes in the soil 

moisture. In conclusion, it can be said that Vibroflexen and manure seem to have no significant 

impact on C-band backscatter. After winter ploughing a significant increase in backscatter can 

be observed, this is however to some degree related to a freezing and thawing of the soil. A 

more detailed analysis and additional data is required to understand the factors that cause 

the inconsistent behaviour of spring ploughing in the time series. Especially pictures before 

and after ploughing, in situ SSM, and information on the soil type (grain size of the soil 

particles) are examples to be named here 

 

 

Fig. 6: Scatterplot showing differences in VV and VH polarized backscatter for various field 
management practices. 
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Fig. 7: Sentinel-1 time series for a spring barley field in the Netherlands in 2022. In addition to the SIG0 
VV, VH, and CR time series, the field management events, and the daily temperature is illustrated. 

 

 

 

Fig. 8: Sentinel-1 time series plot for a sugar beet field in the Netherlands in 2022. In addition to the 
SIG0 VV, VH, and CR time series, the field management events, and daily precipitation sums are 
illustrated. 
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 Sensitivity of remote sensing observations to yield 

In a next step, the sensitivity of EO variables to yield was investigated. For this analysis, the 

variables from the Sentinel-1 and Sentinel-2 time series were resampled to monthly mean 

values. These were then correlated to the yield at the end of the season. This analysis was 

done for all major crops with at least 100 yield measurements and always for the four months 

before the harvest. To mitigate a potential impact of different climate conditions on the 

analysis, only data from the Czech Republic was used as this country has the highest number 

of observations.  

2.2.1 Correlation per crop and lead time 

Table 1 shows the Pearson R coefficient for all major crops and various EO variables. As the 

NMDI and NDWI results were very similar, with NDMI achieving slightly higher accuracies, the 

NDWI results are not included in table 1. Due to the low sensitivity of VV backscatter to 

vegetation and the low overall correlation, this variable is also not included in the table. As 

the table indicates, optical indices show overall significantly higher correlations. Depending 

on the crop type, either the EVI, NDVI, or NMDI shows the highest correlation. In most cases 

the values for the NDVI and EVI are very similar. Looking at the individual crops, soya has the 

lowest correlation for all EO variables. For no variable and no single season its correlation 

coefficient exceeds 0.16. Green Maize has on average the highest correlation for all EO 

variables. Except for soya the remaining crops have a very similar mean correlation for the 

optical variables. For the SAR variables, spring barley has the second highest value. 
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Tab. 1: Pearson R correlation for major crops and various EO variables for the lead times –3 to 0. The 
highest value per crop is highlighted in green. 

 NDVI EVI NMDI VH CR 

Lead time 

 (month) 

-3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0 

winter 
wheat 

0.21 0.25 0.30 0.24 0.21 0.19 0.22 0.17 0.03 0.09 0.15 0.36 -0.02 -0.04 -0.11 -0.36 -0.03 0.01 0.07 -0.13 

green 
maize 

-0.05 0.49 0.45 0.37 -0.10 0.55 0.52 0.29 0.16 0.04 0.52 0.53 0.05 0.46 -0.02 -0.12 0.08 0.19 0.34 0.41 

grain 
maize and 
corn-cob-
mix 

0.02 0.43 0.32 0.28 -0.07 0.30 0.41 0.33 0.05 -0.10 0.30 0.28 -0.11 0.23 0.31 0.18 -0.03 0.10 0.09 0.18 

spring 
barley 

0.46 0.40 -0.01 0.18 0.48 0.40 0.03 0.13 0.48 0.56 0.19 0.07 -0.22 0.02 0.18 -0.12 0.26 0.06 0.14 0.08 

winter 
barley 

0.35 0.23 0.08 0.25 0.23 0.16 0.11 0.17 0.07 -0.06 0.39 0.57 -0.20 -0.34 -0.41 -0.57 -0.16 -0.22 0.04 0.04 

soya -0.21 0.06 0.13 -0.21 -0.16 0.17 0.19 -0.17 -0.30 0.05 0.15 -0.44 -0.14 -0.04 0.07 0.01 -0.12 -0.28 -0.2 0.01 

 

The most significant observation is, that for the majority of crops, the highest correlation is 

not observed at the month closest to harvest (lead time 0) but already two months before 

(lead time –2).  This can to some degree be explained by the fact, that always all EO 

observations from a month were included in the analysis. This means, that for the harvest 

month observations after the harvest were also included. However, also the month before the 

harvest (lead time –1) shows in many cases lower correlations than two months before the 

harvest. Here, also significant differences between the optical indices are visible. Whereas the 

NMDI shows in most cases the highest correlation at month 0 or –1, NDVI and EVI show 

typically the highest correlation for the months –2 and –1. An explanation for this is that the 

latter two indices often start to decrease already several weeks before the harvest at the 

ripening stage of the plant when the crops lose their green colour. As the NDVI and EVI are 

chlorophyll sensitive their correlation also decreases. A similar trend can be observed for the 

SAR indices VH and CR when looking at single season correlation values. VH typically reaches 

the highest correlation during the month –2 when due to the earing and flowering the 

depolarization of the emitted radar wave is high and VH backscatter increases faster than VV 

backscatter. CR on the other hand in most cases has the highest correlation for the months –

1 and 0 as it is a proxy of the plant biomass (Vreugdenhil et al., 2020) 
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Tab. 2: Pearson R correlation for green maize and winter barley and various EO variables for the lead 
times –3 to 0. The highest value per variable is highlighted in green. 

Green Maize 2019  Winter barley 2021 

 -3 -2 -1 0  -3 -2 -1 0 

NDVI -0.34 0.49 0.51 0.28  0.22 0.19 0.17 0.30 

EVI -0.33 0.73 0.72 0.49  0.01 0.28 0.16 0.12 

NMDI 0.38 -0.03 0.41 0.50  0.1 0.14 0.51 0.74 

VH -0.30 0.34 -0.17 -0,52  -0.43 -0.66 -0.65 -0.75 

CR 0.07 0.14 0.46 0.70  -0.49 -0.41 -0.32 -0.31 

 

 

 

Table 2 shows the Pearson R coefficient for the five EO variables NDVI, EVI, NMDI, VH, and CR 

for green maize in the year 2022 and winter barley in 2021. Looking at the single year 

correlation values, the differences between the SAR variables and optical indices are getting 

less profound. Here, in the case of green maize, CR reaches correlation coefficients similar to 

the EVI. The tendency of CR and NMDI having the highest correlation at the harvest and the 

other variables 2-3 months before the harvest can be observed again. For winter barley 2021 

the correlations are significantly lower for all variables except for NMDI. The year 2021 

observed below average precipitation in the winter months which lead to the lower 

correlations. The next chapter investigates the impact of drought on the correlation to yield 

in more detail. 
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2.2.2 Impact of droughts on EO variables 

 

Fig. 9: Pearson R correlation for different years between the yield at the end of the season and CR 
(upper row) and EVI (lower row)  for winter barley fields (left) and grain maize (right) for the 3 months 
before the harvest. 

 

In a next step, the sensitivity of EO variables to vegetation under drought conditions was 

assessed. The goal here was to investigate if and which variables are able to observe the 

impact of droughts on the crops. To do so, in a first step the Pearson R correlation between 

the EO variables and the yield was compared for all years. Figure 9 shows these correlations 

for the crops winter barley and grain maize for the variables CR and EVI. As the figure indicates 

the correlations highly vary between the years, but also between the variables. The latter is 

especially the case for winter barley. CR has a high correlation for the year 2020, whereas EVI 

shows very low correlation for this year. The opposite is true for 2021. For this year CR has a 

strong negative correlation, whereas EVI has slight positive correlation. For grain maize the 
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variables show more similar trends for the individual years. The years 2017 and 2021 have the 

highest correlation in the months –3 and –2. For the months at harvest time, 2019 has the 

lowest correlation and 2021 the highest value. 

 

Fig. 10: Time series plots showing average NMDI, EVI and CR time series for winter barley fields in Czech 
Republic in the years 2020 and 2021. In addition to the mean value, +/- 0.25 standard deviation is 
plotted. 
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Fig. 11: Time series plots showing average NMDI, EVI and CR time series for grain maize fields in Czech 
Republic in the years 2020 and 2021. In addition to the mean value, +/- 0.25 standard deviation is 
plotted. 

 

Afterwards, EO time series for years with and without drought conditions were investigated 

in detail. The years 2020 and 2021 were selected, as 2020 had normal to high precipitation in 

the winter months whereas 2021 observed above average precipitation in winter in the Czech 

Republic. And inverse trend was observed in summer with a severe drought in 2020 but 

normal to high precipitation in 2021. Figure 9 shows the comparison of winter barley time 

series for the year 2020 and 2021 for the CR, the NMDI and EVI. The NMDI time series for the 

year 2020 is higher in the first months of the year but decreases below the level of 2021 in 

April. This is most likely due to the fact, that the NMDI is sensitive to both the soil moisture 

and the vegetation water content but in an inverse behaviour. NMDI is high for low soil 

moisture, but low for high vegetation water content. With the growth of the winter barley 

plants, they start to dominate the signal in March/April leading to the decrease of the NMDI. 
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CR and the EVI both seems to capture the lower plant biomass in 2021 with the difference, 

that EVI is decreasing one month earlier than CR. This can be explained by the fact, that EVI is 

more sensitive to the chlorophyl content and CR to the plant structure. EVI thus already 

decreases before the harvest with ripening of the plant but CR after the harvest. 

Figure 10 shows the same variables and years but for the crop grain maize. Despite the 

different precipitation conditions during spring/summer, the time series for the two years are 

very similar for both variables. If we look at the correlation for the two years in figure 9 we 

can see however that the correlation in the drought year 2020 is significantly lower compared 

to 2021.  The reason for the lower correlation lies thus not in the EO variables but in the lower 

yield values for this year. 

In summary, the results showed significant differences in the correlation of earth observation 

variables to crop yield and also in the visibility of droughts in EO time series. These can be 

partly explained by the sensitivity to different crop characteristics. This also leads to the 

differences between the EO variables in the correlation between lead times and the yield. 

Based on these facts, a combination of Sentinel-1 and Sentinel-2 promises the greatest 

accuracy in crop yield forecasts. 
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3 Crop yield forecast generation  

 Crop models 

We used the Hermes model for yield prediction. The model is validated with the data observed 

in small-plot experiments at the Polkovice site. Model validation will be performed for winter 

wheat, spring barley, winter rape, and maize.  

The HERMES model belongs among the widely used, easily accessible and well-documented 

crop growth simulation models (e.g. Palosuo et al., 2011). It is a process-oriented model. The 

benefit of using HERMES is the ability to work with a relatively small amount of input data sets 

that are ordinarily available at the farm level and that take into consideration plant growth, N-

uptake, the process of net mineralization, the denitrification and transport of water and nitrate 

(Kersebaum et al., 2011). 

The input data were divided into the following three parts: weather data, soil information and 

management data. Individual parameters entered into the model were obtained from soil and 

meteorological measurements including data about global solar radiation, air temperature 

(average, minimum and maximum), air humidity, wind speed, precipitation and tillage. 

Further, data of harvest, pre-crop and initial conditions were used to launch the model. These 

data were acquired from the Polkovice experimental station for the period 2018–2023.   

 Machine learning 

The focus of YIPEEO is to generate crop yield forecasts on a field-level using Earth observation 

data and machine learning. As shown in D1.1: Requirement Baseline, there are several models 

that can be used for this task. Here, we focused on Random Forest (RF) and Extreme Gradient 

Boosting (XGB). The next step will be to also try deep learning models (Long-short term 

memory) with the Spain data. 

3.2.1 Model setup 

We established four crop yield forecasts per crop for different times before the harvest: four 

months to one month before the harvest (from now on called lead times 4 to 1: LT4 to LT1) 

(Fig. 12). For this, we temporally resampled the predictors to a monthly resolution. LT1 

included the data of the last month proceeding harvest, LT2 the second to last month, and so 
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on. Based on this temporal resampling we calculated the crop yield forecasts starting with LT4. 

This only included data of the fourth month before harvest of all predictors. The forecast of 

LT3 was then trained with the predictors of LT4 plus the ones of LT3. As predictors we used all 

Sentinel-1 data, i.e., Sig0 VV, VH, and CR, and the same for Sig40; from Sentinel-2 we used 

only the calculated indices (NDVI, EVI, NMDI, NDWI) and not the individual bands themselves, 

to not get a too large number of predictors. With these datasets from Sentinel-1 and 2, we 

already had 10 predictors per LT. As the information of the months before was always 

included, this results in 40 predictors for LT1 (e.g. NDVI of LT1, LT2, LT3, and LT4, respectively). 

For some tests, we included the additional predictors of ECOSTRESS LST and the precedent 

crop type.  

The temporal resolution of one month is rather coarse. In practice, a higher temporal 

resolution could be of much benefit for farmers and decision-makers. This would lead to more 

regular updates and at the same time a first reliable forecast could be available earlier. 

Therefore, we tested a resampling to biweekly observations too. The model setup remained 

the same, but instead of four monthly timesteps, this led to 8 biweekly timesteps (LT2 to LT16 

for 2 to 16 weeks).  The disadvantage of this approach is that there are some regions with no 

cloudfree Sentinel-2 data with which to calculate the updated crop yield forecasts. Hence, we 

only did some test for biweekly forecasts, but did the main validation for a temporal resolution 

of one month.  
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Fig. 12: Model setup of the machine learning algorithms. 

 

Another important part of the model setup was to split the data into train, validation, and test 

data. As defined in D1.1 RB we will use approximately 60% for training, 20% for validation (i.e. 

for the optimization of the model for example using hyperparameter tuning) and the 

remaining 20% for testing only. Hence, all the results showed in this report are based on the 

training and validation data, and D3.2 PVR will show the testing using the last 20% of data that 

are not used here. The test data was selected in three ways: 

1) Temporal leave-out: this will be done using a leave-one-year-out-cross-validation. 

Each year from 2016 to 2022 will be used once for testing only. The remaining years 

are then used for training and validation. This can be considered as the most realistic 

validation. An operational crop yield forecast, can as well only be trained with data 

from the previous years, and does not have any information about the crop yields of 

the forecasted year. This was only applied to data from Rostenice farm. 

2) Spatial split: most crop yield data is available for the Rostenice farm in Czechia. For 

most other countries, there is not enough data to train and test a machine learning 

model. Hence, we tried to train and validate the model only using the data from 
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Rostenice, and test it on all the other countries and farms. The data from Polkovice 

(Czechia), Netherlands, and Ukraine were each used as test site separately. 

3) Random split: the data from Rostenice is randomly split into test-train-validation data. 

3.2.2 Predictor analysis 

Before the modelling started, we performed an exploratory data analysis to compare the 

predictors to each other. The sensitivity of EO data to crop yields is one part of this (Chapter 

2.2). In addition, it is as well important to know how the predictors correlate with each other, 

as predictors with multi-collinearity can negatively impact the performance of a machine 

learning model (Chan et al., 2022). In the used predictors, there are two possible ways of cross-

correlations: between the predictors (e.g. NDVI to EVI) and temporal ones (e.g. predictors in 

LT3 and LT4). In Fig. 13, we show the cross-correlations of all predictors in June (LT1 for winter 

wheat). It shows an expected pattern. The predictors from Sentinel-1 have large positive 

cross-correlations to each other, as well as the ones from Sentinel-2. Other than that, the 

cross-correlations are from around –0.4 to 0.4 (Fig. 13). The temporal correlations are shown 

on the example of Sig40 VH and NDVI (Fig. 14). It shows that the temporal correlations are 

overall low. There are only some correlations around 0.6 for NDVI of LT3 to LT4 and LT2 to 

LT3, as well as for Sig40 VH between LT4 to LT2 and LT3.   
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Fig. 13: Cross-correlations between the predictors at LT1. 

 



Algorithm Theoretical Basis 
Document v2.0 

YIPEEO: Yield Prediction and Estimation 
using Earth Observation 

Issue 0.10 

Date 3 March 2025 

 

   

 

 

Fig. 14: Temporal cross-correlations between NDVI and Sig40 VH for the different lead times. 

 

3.2.3 Model optimization 

Hyperparameter-tuning (HP-tuning) and feature selection are key for any machine learning 

application. The model performance can be improved using HP-tuning, while feature selection 

helps to reduce the number of used predictors. The latter is not only helpful to address the 

issue of multi-collinearity of predictors but also to obtain a sparse model that is more efficient 

and easier interpretable (Binder et al., 2020). 
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Features were selected firstly while only using default HP settings. The feature selection 

technique is based on recursive feature elimination. I.e., first all predictors are used, and then 

different predictors are removed to see how the performance changes. This was repeated 

until only 10 predictors were left. For this, we used the Python tool RFE from sklearn 

(Pedregosa et al., 2011). The feature selection could be further improved by testing different 

numbers of predictors. This has not yet been done, instead we just used a maximum number 

of 10 predictors.  

After having obtained the most important predictors, the HPs were tuned. For this we used 

different values for the most common HP of XGB and Random Forests. These are the 

maximum tree depth, minimum sample split of the branches, and number of trees. (Probst et 

al., 2019).  

A last step of model optimization we used, was to add further predictors. The model runs 

using only Sentinel-1 and Sentinel-2 data show an obvious deficit of representing temperature 

as a key variable of crop yield forecasting (Bueechi et al., 2023). Therefore, we tested, if the 

forecasts can be further improved using ECOSTRESS land surface temperature. The 

disadvantage of that is, that we lose 3 years of crop data since ECOSTRESS data is only available 

since mid-2018. At the same time, we tested the dataset of the antecedent crop type.  

3.2.4 Model validation 

The model validation using Sentinel-1 and 2 data showed a clear advantage of combining the 

information of these two satellites. The model performance is almost always better when 

using both compared to only Sentinel-1 or 2 data (Fig. 15 to 17), except for LT1 for winter 

wheat (Fig. 15) and LT2 for spring barley (Fig. 17), where only Sentinel-2 data leads to the best 

results. The information from the two satellites complement each other well. While Sentinel-

1 data adds much value in the long-term forecasts (LT3 and LT4) provides Sentinel-2 data good 

results in the last 2 to 3 months before harvest. This seems reasonable as the crops may not 

be evolved enough 4 months before harvest to give a clear signal in optical data. Sentinel-1 

data which is more sensitive to soil moisture can already provide important information about 

the water availability of the crops at that stage. This is in agreement with the exploratory data 
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analysis from Chapter 2, where we concluded that combining S1 and 2 data will most likely 

help to get more reliable forecasts.  

 

Fig. 15: Results of the cross-validation of the winter wheat forecast for using only Sentinel-1 and 
Sentinel-2 data compared to the performance when using all data as predictors. 
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Fig. 16: Same as Fig. 15 for maize. 
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Fig. 17: same as Fig. 15 for spring barley. 

Changing the temporal resolution of the predictors from monthly to biweekly leads to similar 

results. The overall performance is good starting from 14 weeks before the harvest. Hence, 

two weeks earlier than for the monthly forecasts with 3 months (i.e. 12 weeks). Regarding 

Sentinel-1 and 2 data, the conclusion is the same, that the winter wheat model based on S1 

outperforms the S2 model in the early forecasts until around 12 weeks before the harvest and 

afterwards, the S2 model is better. A combination of S1 and S2 still shows the best results. 
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Fig. 18: same as Fig. 15 with using biweekly data instead of monthly values of the predictors 

 

The forecast using ECOSTRESS land surface temperature data performs poorly (R²<0.2). In 

combination with Sentinel-1 and 2 data, it improves the results significantly (Fig. 19). However, 

due to the reduced availability of training data (ECOSTRESS only available since mid-2018), the 

overall performance is lower than when using Sentinel-1 and Sentinel-2 data starting from 

2016 (Fig. 15 and Fig. 19). Therefore, we refrained from using ECOSTRESS data for the further 

modelling in this task.  
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Fig. 19: same as Fig. 15 including ECOSTRESS LST data for maize. 

 

The impact of feature elimination on the model performance is very small (Fig. 20). This is a 

good sign, as the same model performance can be obtained with fewer predictors. HP-tuning 

leads to a significantly better performance, especially for LT3. The combined effect of HP-

tuning and feature elimination is overall a bit worse than when using only HP-tuning.  Still, we 

decided to use both, due to the mentioned advantages of feature selection.  
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Fig. 20: Comparison of the performance of the default XGB winter wheat forecast to feature 
elimination, hyperparameter-tuning, and both. 

  

Finally, we decided to use the model based on Sentinel-1 and 2 data only plus HP-tuning and 

feature elimination for the model runs validated in the PVR. 
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