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Executive Summary 

This document constitutes the first version of the Impact Assessment Report as a result of Task 5, as 

described in the proposal of the ESA YIPEEO project. 
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1. Science 

.1.1 Assess impact of the 2018 drought on yield on different crop types in north-western Europe 

using the Experimental dataset and upscaled yield data 

Due to the unforeseen long-term sick leave of Mariette Vreugdenhil we can’t present updates on 

her paper for Science case 1. We will provide an update on this as soon as possible. In the following 

we present therefore only the second paper related to the Science Case 1 focusing on the value 

of different soil moisture products for yield prediction. 

.1.1.1 Introduction 

Yield prediction is crucial for optimizing agricultural practices by enabling precise resource 

allocation and maximizing crop productivity. Accurate yield predictions also help mitigate financial 

risks for farmers by informing decisions on crop selection and market timing. Furthermore, they 

contribute to environmental sustainability by promoting efficient use of inputs such as water, 

fertilizers, and pesticides. In drought years, harvest forecasts are essential for the early detection 

of a lack of food supply. This allows countermeasures such as artificial irrigation or importing food. 

A key indicator for drought conditions is Surface Soil Moisture (SSM). It is sensitive to weather and 

climate patterns and to precipitation and temperature dynamics. Since soil moisture is an 

important variable that influences plant growth and thus crop yield, it was used in numerous 

studies for yield prediction, mostly as an input to machine learning models. Bushong et al. (2016) 

found that including satellite derived soil moisture in the prediction of grain yield led to an increase 

in R2 of 0.09. Moreover, White et al. (2020) assessed the value of SMOS SSM for canola yield 

prediction and observed an improved accuracy in the majority of the tested ecodistricts. In 

another study, Buecchi et al. (2023) used in their study CCI SSM and SWI for the prediction of 

wheat and maize yield and found that especially in drought years, SSM is one of the most 

important predictors. Chen et al. (2014) demonstrated in their study the potential of SSM to 

quantify the water driven variability in NDVI. Amor et al. (2013) used AMSR-E soil moisture and 

LAI data for maize yield prediction and concluded that AMSR-E soil moisture tends to be more 

biased under the presence of high vegetation and suggested updating rootzone soil moisture by 

near-surface soil moisture assimilation. Finally, Potopova et al. (2020) compared ASCAT SWI for 

top soil and root zone to model yield losses in Moldova for three crop types and observed a higher 

correlation for top soil moisture product with yield. While these studies demonstrated the general 

value of soil moisture products for yield prediction, an in-depth assessment of its potentials and 
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limitations has not yet been carried out. In this science case we will compare a satellite derived 

and a model soil moisture product for the prediction of spring barley yield in Austria, Czech 

Republic (both NUTS4 level) and Germany (NUTS-3 level) for the years 2016-2022. In detail, the 

science case will focus on the following research issues: How much of the spring barley yield 

variability can be explained only by soil moisture? How does yield prediction based on satellite 

derived soil moisture compare to yield prediction based on modelled soil moisture? How 

transferable are the yield prediction models over space and over time? 

.1.1.2 Materials 

The studies uses the HSAF Soil Moisture Product (Hydrology Satellite Application Facility Soil 

Moisture Product). This product is developed under the EUMETSAT's (European Organisation for 

the Exploitation of Meteorological Satellites) H-SAF program and uses C-band microwave satellite 

observations from the ASCAT (Advanced Scatterometer) satellite mission to estimate the water 

content in the top few centimeters of soil (H SAF, 2021). In this study SSM version H119 and H120 

at a 12.5km sampling are used. In addition, we used the Volumetric Soil Water Layer 1 (SWVL1) 

variable from the ERA5 reanalysis dataset that represents the volumetric soil moisture content in 

the topmost soil layer, ranging from 0 to 7 cm depth. This variable quantifies the amount of water 

contained within the soil matrix in the specified layer, expressed as a fraction of the total soil 

volume. It is provided on 0.25°x0.25° grid in a temporal resolution of 1 hour (European Centre for 

Medium-Range Weather Forecasts, 2017). 

For all NUTS regions, the grid points closest to the centroid of the NUTS region was selected from 

the two SSM datasets. Subsequently, time series for the period April to the end of June were 

extracted to cover the vegetation period of Spring barley up to one month before harvest. 

Afterwards, the time series were resampled to 14 daily time steps. This time window was selected 

as compromise to capture soil moisture variations over time but to avoid a too high number of 

input features for the machine learning model. For the 14 daily time steps, the statistics min, max, 

and mean were calculated and used as input features for the model.  

As a model we used a Feed Forward Neural Network with 2,500 hidden nodes and dropout as a 

regularization mechanism to prevent overfitting. Subsequently, we trained individual Feed 

Forward Neural Networks for the soil moisture products using the absolute spring barley yield as 

a target variable. After the prediction, we calculated the error metrics RMSE, MAE, and MAPE for 

the test data. 
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.1.1.3 Results: 

In a first step, we assessed the predictive power of the two soil moisture products for spring barley 

yield. For this we used the same random train/test split over all countries and years for both soil 

moisture products. Tab. 1 outlines the error metrics for both products. The HSAF based model 

achieved a R² of 0.23, a RMSE of 0.90 and a MAE of 0.69. The HSAF SSM product can thus explain 

23% of the variability of spring barley yield in the data set. The values for the ERA5 model are 

better for most metrics. The model achieved a R2 of 0.36, RMSE 0.84 and MAE 0.66. The ERA5 

SWVL1 product can thus explain 36% of the variability of spring barley yield in the data. 

Table 1: Error metrics for the HSAF SSM product and the ERA5 SWVL1 using a random train/test split. 

  

R² RMSE MAE MAPE R² 

 

RMSE MAE MAPE 

0.23 0.90 0.69 0.15 0.36 0.84 0.66 0.14 

  

 

Figure 1: Correlation plots between the predicted and reference yield for the HSAF soil moisture product 

(left) and the ERA5 product (right). 

Fig. 1 illustrates the correlation plots between the predicted and reference yield for both products. 

Since the points are distributed along the diagonal and are not just randomly distributed or 

centered around the mean value, the model is able to extract patterns from the soil moisture data 
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that enable an estimation of the yield. However, low reference yields show the tendency to be 

overestimated for both input products. Overestimations occur to at a similar frequency for both 

products but more extreme cases can be found for the HSAF product. 

Table 2: Error metrics for the HSAF SSM product and the ERA5 SWVL1 when training a model in two 

countries and testing it in the remaining country. 

 

Subsequently, we tested the spatial and temporal transferability of the models. This way it is 

possible to make a statement about the robustness of SSM as a predictor. First, we conducted a 

leave one out cross validation on country level. We subsequently trained a model on the data of 

two of the three countries and tested it on the data of the remaining country. Tab. 2 outlines the 

achieved error metrics for both products and the three countries. As can be seen from the table, 

the achieved metrics are comparable to those of the random split over space and time for both 

products. The metrics for Austria are the worst, whereby the decline here is higher for the ERA5 

SWVL1 with 0.08 for RMSE and MAE than for HSAF (0.4 for RMSE 0.3 for MAE). 

Fig. 2 illustrates correlations plots for the two products and all countries. The correlation plots 

show a similar distribution as for the random train test split. Here, too, there is a significant 

overestimation of low crop yields. This is particularly noticeable in Austria. Overall, both soil 

moisture products again show very similar results.  

 

 

 

 

   

R² RMSE MAE MAPE R² 

 

RMSE MAE MAPE 

AT 0.26 0.94 0.72 0.15 0.27 0.92 0.74 0.16 

CZ 0.28 0.90 0.70 0.15 0.36 0.83 0.64 0.13 

DE 0.27 0.90 0.70 0.14 0.31 0.86 0.68 0.14 

Okomentoval(a): [BP1]: ED: are these metrics acceptable, to 
be concluded as useful? 

Okomentoval(a): [RF2R1]: We rephrased the first research 
issue in this science case to make the goal clearer: How much of the 
spring barley yield variability can be explained solely by soil 
moisture. We added here now the R² value for the two products to 
answer this question. In the paper based on this science case we will 
also focus on this aspect and make the general idea clearer (not 
proposing yield prediction only on soil moisture but assessing how 
much of the yield can be explained by soil moisture) 



Impact Assessment Report v2.0 YIPEEO: Yield Prediction and Estimation 
using Earth Observation 

Issue 2.0 

Date 21 February 2025 

 

9 

 

 

Afterwards, we tested the temporal transferability. Here, we performed a leave  

 

 

one year out cross validation. Thus, the model was subsequently trained on the data of all years 

except for one and then tested for the left-out year. 

Figure 2: Correlation plots between the predicted and reference yield for 

the HSAF soil moisture product (left) and the ERA5 product (right) for 

Austria (AT), Czech Republic (CZ) and Germany (DE). 
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Tab. 3 illustrates the results for the temporal leave-out experiment. The accuracies achieved differ 

significantly between the years. For the years 2021, 2016 and 2019, metrics for both products are only 

up to 0.1 worse than the RMSE and the MAE in a random train/test split. In 2017, 2018 and 2022, the 

error values are already significantly larger. By far the greatest deterioration can be observed for 2020. 

For this year, the deviation is higher for ERA5 (RMSE increases by 0.76) compared to HSAF (RMSE 

increases by 0.63). The analysis thus shows that temporal transferability is more difficult than spatial 

transferability. For a temporal transfer, good results were only achieved for a few years. 

Table 3: Error metrics for the HSAF SSM product and the ERA5 SWVL1 when training a model in all but 

one year and testing it in the left-out year. 

 

The significant differences in the temporal transferability can be partly explained by the differences in 

the correlation between the mean SSM and the yield at the end of the season. The correlation 

heatmaps in Fig. 3 show the yearly correlation between the mean SSM of different calendar weeks and 

the yield at the end of the season for the HSAF and the ERA5 product.  

 HSAF SSM ERA5 SWVL1 

RMSE MAE MAPE RMSE MAE MAPE 

2016 1.01 0.84 0.18 1.02 0.80 0.18 

2017 1.12 0.91 0.20 1.17 0.94 0.20 

2018 1.28 1.01 0.20 1.52 1.20 0.23 

2019 1.07 0.82 0.18 1.23 1.02 0.22 

2020 1.53 1.23 0.30 1.60 1.32 0.34 

2021 1.01 0.78 0.16 0.97 0.76 0.15 

2022 1.13 0.91 0.20 1.28 1.02 0.19 
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Figure 4: Correlation heatmaps between the mean soil moisture at different calendar weeks and yield 

at the end of the seasons for the years 2016-2022 for the HSAF product. 

Figure 3: Same as figure 3 but for the ERA5 SWVL1 product. 
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As can be seen from the figure, the differences in the correlation coefficients are significant 

between the years. For both products, the coefficient is highest for the year 2016, which is one of 

the years with the best error metrics. Low coefficients occur in 2017, 2018 and 2020, where the 

values for the HSAF product are slightly higher than for the ERA5 product. If we look at the values 

for the respective calendar weeks, we can see strong differences between the years. For HSAF, 

the highest values in 2016 and 2021 are in weeks 24-25 (mid-June). In 2017, 2018 and 2022, on 

the other hand, the higher correlations occur in the early calendar weeks (period April to early 

May). The correlation values for ERA5 are slightly lower overall.  

.1.1.4 Outlook 

In a next step, we aim to understand the performances differences between the years in more 

detail. In particular, we will investigate if soil moisture variations or yield variations are in those 

years the main driver for the decline of the model performance. This will help us understand under 

which conditions soil moisture has a higher predictive power and under which a lower 

performance can be expected. Moreover, we will test the accuracies for predictions with a lead 

time longer than one month. Finally, we will also replace the current ASCAT SSM product with the 

newest release which includes landcover trend correction and should capture drought conditions 

better.  
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.1.2 Assessment of the impact of the war in Ukraine on production of main crops 

.1.2.1 Introduction 

In SC-2 we assess the impact of the war in Ukraine, which started in February 2022, on the crop 

yields for that year. In the proposal, we suggested investigating the change in predicted and 

harvested yields based on early season predictions as developed in Task 3 and available in the 

experimental dataset (ED). Based on the results of the ED, an investigation of the early-season 

predictions may not be that useful due to their rather low performance. Instead, we developed a 

new approach to assess the impact of the war on crop yield losses. In our database, we have some 

data from Ukraine on field level. Since this is mainly in the west of Ukraine and from the year 

before 2022, it is not that much suited for this task. The regional data that we have from Ukraine 

is better suited since it is available from 2017 to 2022. Hence, the first year of the Russian invasion 

of Ukraine is covered. In addition, we have an extensive database of regional crop yield data from 

central Europe (Fig. 5). The results of the ATBD have shown that directly transferring the crop yield 

forecasts trained in central Europe does not work well in forecasting crop yields in Ukraine. This 

may be explained by the different climate classes (C: warm temperate in central Europe and D: 

snow for Ukraine cf. Fig. 5). Hence, we suggest using transfer learning to improve the forecasts of 

Ukraine. Using this method is more promising to achieve reasonable results that can be used to 

assess the impacts of the war in Ukraine on their crop production. Our forecasts for 2022 are then 

compared to the observed values to see how much of the crop yields can be explained by weather. 

The question we aim to answer is if there are variabilities in the crop yields not explainable by the 

weather and additional uncertainties. In addition, it will be an interesting case study to test 

transfer learning for crop yield forecasting in different climatic zones. There is only one study 

known to us that has done so (Wang et al., 2018) 

.1.2.2 Methods 

For the regional scale crop yield forecasts we have data available for central Europe for the years 

2000-2022 and for Ukraine from 2017-2022. The climate zones are different between these two 

regions (Cfb in central Europe and Dfb in Ukraine cf. Fig. 5). Hence, for setting up a crop yield 

forecasting model based on machine learning the transferability has to be checked carefully. 

Simply training the model with data from all regions may not work out. Hence, we tried different 

approaches to optimize the crop yield forecasts for Ukraine: 
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1) Using leave-one-country-out cross-validation to check how well a model can forecast 

countries from which it has not seen data. 

2) Using leave-one-year-out cross-validation and using the data from Ukraine for transfer-

learning. I.e. the model is trained using all data from central Europe and all years except 

for one year. The model is then retrained with data from Ukraine except for the testing 

year. Finally, the model is tested on the Ukraine data of the testing year.  

 

Figure 5: Overview of the study area, the used NUTS3 regions and their climate classes according to 

Köppen-Geiger (Kottek et al., 2006) 

The model run is only done for a lead time of 1 week before the harvest. With this, we can 

ensure that the model obtains all climatic information throughout the growing season. Since the 

goal is to explain crop yield losses in Ukraine by war or climatic conditions, there is not much use 

in running the model in forecasting mode with lead times longer than this. As predictors, we only 

use ERA5-Land data due to its availability for the whole time-series where we have crop yield 

data. Also, it provides all kinds of climatological information that can be used to successfully 

train our model (temperature, precipitation, soil moisture, potential evapotranspiration, actual 

evaporation, and net surface radiation). Since we do not have crop classification maps of 

Ukraine, S1 and S2 data was not possible to extract on this scale. Also, we do not want to include 

vegetation information in the model to strictly only model it by climatic conditions. The data is 

extracted as mean observations per region and day. This data is then resampled to monthly 

means starting 4 months before the harvest. For the harvest dates, we use the information from 
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the crop calendar of the joint research centre for the central European data (JRC, 2024) and from 

the US Department of Agriculture (USDA, 2024) for Ukraine. We are doing the modelling for the 

three crops maize, winter wheat and spring barley. For validation we use Pearson’s correlation 

between observed and forecasted crop yields as well as normalized Root Mean Square Error 

(nRMSE), which is the RMSE normalized by the mean observed crop yields.  

.1.2.3 Results 

Initial results without transfer learning showed poor performance for the leave-one-country-out 

cross-validation (Fig. 6). The correlations between forecasted and observed crop yields are 

below 0.5 for all countries and crops except for winter wheat in France and the nRMSE are high. 

The impact of the climate zones does not seem to be big, since all countries have a low 

performance. Still, Ukraine has among the lowest correlations for maize and winter wheat and 

average for spring barley. There is much room for improvement which we explore in the next 

step with transfer learning.  

 

Figure 6: Results of the leave-one-year-out cross-validation for the three crops without transfer-

learning 

Transfer learning significantly improved the forecasts (Fig. 7). The leave-one-year-out cross-

validation revealed that the model could effectively predict crop yields in Ukraine for the 3 crops. 
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The maize model achieved correlations of around 0.7 with rather high errors (of around 30%), 

though. The spring barley and winter wheat models had much lower errors (around 15%) and high 

correlations for barley (~0.7) and medium correlations for wheat (~0.5). The results are much 

better in almost all cases using transfer learning compared to the initial model. The year 2022, 

after the start of the war, has very good results compared to the other years. This indicates the 

crop yields can largely be explained by the climatic conditions even in that year. However, it is 

crucial to note that our model used average crop yields per region. We do not have any data about 

the total yields per area nor about how much area was cultivated. This doesn't fully capture the 

complex realities on the ground in 2022:  

• Many farmers in invaded areas were unable to start crop cultivation due to the conflict. 

• Farmers who did cultivate crops often had limited resources and faced high uncertainties 

about whether they could safely harvest. 

• Fields that were successfully harvested by the end of 2022 may have shown normal crop 

growth patterns.    

• The total cultivated area in affected regions was significantly reduced compared to 

previous years. 

Having mentioned this limitation, we further analysed the results to see if the regions in the 

southeast, occupied by Russia, are specifically affected by low crop yields. Fig. 8 shows the 

forecasted and observed crop yields in 2022 for all regions in Ukraine. It shows that particularly 

the occupied regions in the southeast have very low observed and forecasted crop yields. Hence, 

we can again state that the low crop yields in this area can be explained by the unfavourable 

weather conditions. The regions that were regained by Ukraine (but were still occupied in 2022) 

showed rather higher crop yields than expected for winter wheat and spring barley.  
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Figure 7: Results of the leave-one-year-out cross-validation for Ukraine, with (purple) and without 

(orange) transfer learning. 

 

Figure 8: results of the crop yield forecasts in 2022 showing all regions of Ukraine: red are the areas in 

the southeast that are completely occupied by the Russians (i.e. Donetsk, Zaporizhzhya, Luhansk, and 

Kherson) - orange are the regions that have been occupied for some time by the Russians but were 

regained be Ukraine (i.e., Mykolayiv, Sumy, Kharkiv, Chernihiv, and Kyivska - for the latter we have no 

crop yield data). Estimations for that are based on the Ukraine war map provided by crisisgroup.org 

Okomentoval(a): [BP5]: ED: I had also a comment to this x-axis 
is this metric t/ha or dt tons/ha? 

Okomentoval(a): [BPE6R5]: Yes, these are as well t/ha 

https://www.crisisgroup.org/content/ukraine-war-map-tracking-frontlines
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As a last analysis, we looked at the four occupied regions in more detail. We evaluated how well 

the model captures the annual variabilities of the crop yields over the years 2017-2022 (Fig. 9). 

This showed that the maize forecasts are quite bad. For the other two crops the forecasts are 

better. The results show again that the low crop yields in 2022 are not exceptional and were to be 

expected by the climatic conditions.  

 

Figure 8: Results of the leave-one-year-out cross-validation for the 4 regions occupied by Russia: UA14 

- Donetsk, UA23 - Zaporizhzhya, UA44 - Luhansk, UA65 - Kherson. The error bands are based on the 

RMSE of the models per year. 

 

.1.2.4 Conclusion: 

The results show that transfer learning is a powerful tool for crop yield forecasting in a country 

where we do not have much data. The model can even be applied in different climatic conditions. 

By doing so, we have implemented a crop yield forecasting system for Ukraine and evaluated its 
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performance with a focus on the year 2022, i.e. after the Russian invasion. The results showed 

that crop yields in the occupied regions were low in 2022 compared to other areas. This is not 

exceptional, though, as these regions always have rather low average crop yields.  The low crop 

yields can mainly be explained by the unfavourable meteorological conditions. However, we also 

pointed out that the analysis has some flaws, as the average crop yields in the region do not well 

reflect the actual impacts the war has. Instead, we could only show that the farmers who were 

still able to cultivate crops achieved average crop yields considering the meteorological conditions.  

As a next step we will further elaborate on the results presented here and write a paper about 

spatial transfer learning for crop yield forecasting with the results shown here as a case study for 

applicability of such methods. Also, we are still in contact with Svitlana Kokhan, who provided us 

with the crop yield data from Ukraine. She may provide us with more crop masks or total yields 

per area which we will use to improve the results and take the actual impacts of war further into 

account.  
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Ukraine 2023. 
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.1.3 Assessing the value of irrigation for enhancing crop production and mitigating yield losses 

Irrigation is the largest contributor of freshwater consumption globally, in many instances 

leading to negative environmental effects. However, irrigated agriculture can play an important 

role in ensuring food security by increasing crop yields. Sustainable irrigation practices aim 

therefore at maximizing crop production, while reducing the negative impact of extensive 

irrigation. Indeed, both the correct timing of irrigation, i.e., when the vegetation most needs it, 

as well as the amount of water allocated to the field are key elements to guarantee the highest 

water use efficiency.  

Recently, satellite soil moisture products have been used to derive timing and amounts of water 

used for irrigation on a quasi-field scale (Zappa et al., 2021). Combining this information with 

water balance models (e.g., SoilClim (Hlavinka et al., 2011; Řehoř et al., 2021)) and crop yield 

forecasting models can provide insights on the overall contribution of irrigation to the final yield. 

In this SC, we will first explore how the actual (EO-derived) irrigation impacts the productivity at 

the end of the season, and then we will investigate how different timings and water volumes could 

have further improved the crop yields. This study will seek a close interaction with the 

IRRIGATION+ and 4D-MED activities sponsored by ESA. 

In this science case, the impact of irrigation on crop yields is evaluated for a field level dataset 

comprised of 8092 records located in the Madrid and Lleida regions of Spain (Madrid: 1914 

records, Lleida: 6178). The dataset covers the period of 2016 to 2022 and contains yearly records 

of each field’s shape, location and area, the cultivated crop and whether it is irrigated or not. The 

vast majority of fields are cultivated with either winter barley (45.4%), winter wheat (26.9%) or 

maize (18.2%). This data alone is sufficient to give a first indication of the importance of irrigation 

for enhancing crop yield in these regions. Fig. 1 clearly shows that irrigated fields have a much 

higher yield on average (5.1 ± 1.5 compared to 2.9 ± 1.4 t/ha for winter barley and 5.7 ± 1.6 

compared to 3.3 ± 1.5 t/ha for winter wheat). Note that for maize, not enough fields are non-

irrigated for results to be statistically significant.  

As a next step, irrigation water timings and amounts are estimated based on Earth Observation 

data from Sentinel-1 and subsequently related to crop yield. For this part of the science case, we 

focus on the Lleida region due to (a) greater number of records (3674 irrigated fields) and (b) more 

readily available satellite and ancillary datasets. The Lleida region forms part of the Ebro basin in 

northeastern Spain, which is characterised by highly irrigated agriculture, covering roughly 10% of 

Okomentoval(a): [BP9]: ED: which products are used for that? 

Okomentoval(a): [FM10R9]: this is specified further down, 
but I added it here as well 
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the total area (Isidoro and Aragüés, 2007)  and being responsible for up to 90% of the water 

consumption in the region (Quiroga et al., 2011).   

 

Figure 9: Distribution of crop yields for irrigated and non-irrigated fields, distinguished by crop type. 

 

 

The irrigation water timings and quantities in the Ebro basin have been derived previously from 

Earth Observation data for the period 2017-2020 as part of the IRRIGATION+ project using a 

modified model-independent version of the SM_Delta algorithm (Zappa et al., 2024). This 

approach detects irrigation events and quantifies the corresponding irrigation amounts by 

comparing soil moisture from a specific (potentially irrigated) pixel to the average soil moisture 

found in the surrounding pixels. This approach shows good correlation of irrigation water amounts 

with reference data for high-resolution soil moisture datasets, for which one can assume that 

precipitation is constant over several pixel, such that the only difference in soil moisture between 

neighbouring pixels can be attributed to irrigation (Zappa et al., 2021, Zappa et al., 2024). The 

SM_Delta approach was applied to the Sentinel-1 surface soil moisture (S1-SSM) product obtained 

with a first-order radiative transfer model (RT1) (Quast et al., 2023), available at a 500m sampling 

with 1km resolution.  

This dataset from the IRRIGATION+ project could not be used directly to estimate irrigation for the 

field-scale data available for the Lleida region in this project. As can be seen from Fig. 10, most 

individual fields are much smaller than the pixel size of the irrigation dataset (500mx500m = 25ha). 

https://www.sciencedirect.com/science/article/pii/S0378377424001082#bib33
https://www.sciencedirect.com/science/article/pii/S0378377424001082#bib60
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Indeed, the average field only occupies an area of about 2 ha, although field sizes vary substantially 

with a standard deviation of 2.1 ha. Given that the field data is arranged in square clusters of 

approximately 700mx700m (Fig. 9), and that most clusters contain either only irrigated or only 

non-irrigated fields, it would seem reasonable to map irrigation on the cluster level.    

 

Figure 10: Exemplary map section of Lleida fields. Colours indicate whether the field is irrigated (blue) 

or not (yellow). 

 

However, this would require all (or at least most) fields within a cluster to be used to cultivate the 

same crop or crops with the same growing – and therefore irrigation – season.  Fig. 11 shows that 

this is not the case, as the summer crop maize is often grown on fields next to the winter crops 

barley and wheat. This will lead to erroneously mapped irrigation amounts. For example, if the 

same irrigation amount sometime in August from the irrigation dataset were mapped to all pixels 

in the cluster, one would wrongly conclude that a winter barley field was irrigated after the crop 

had already been harvested. Therefore, an algorithm was developed to map the pixel level 

irrigation data to the field-scale.  
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Figure 11: Exemplary map section of Lleida fields. Colours indicate the crop grown on each field. 

 

 

This algorithm uses ancillary field-scale data from the Geographic Information System for 

Agricultural Parcels (SIGPAC), which provides yearly maps of all agricultural fields and their 

exploitation in all of Catalonia (https://agricultura.gencat.cat/ca/ambits/desenvolupament-

rural/sigpac/mapa-cultius). The dataset provides information on the crop type of each field and 

whether it is irrigated or not. It is largely consistent with the field data provided to us. Newer 

versions also include information on the presence of double crops (typically winter barley followed 

by maize or corn), but this information is not available for the period under investigation here 

(2017-2020). Therefore, we employ the NDVI peak detection method devised by Olivera-Guerra 

et al. (2023) to classify double crops. The method locates peaks in the smoothed annual Sentinel-

2 NDVI time series after averaging over pixels falling within each field. If two peaks are detected 

within the right time intervals of the summer and winter cereal growing seasons, the field is 

classified as harbouring two consecutive (double) crops. Fig. 12 depicts the percentage of fields 

correctly classified (identical to the provided dataset), classified as double crops or wrongly 

classified (other).  For the three most common crops, more than 90% of fields are either classified 

https://agricultura.gencat.cat/ca/ambits/desenvolupament-rural/sigpac/mapa-cultius
https://agricultura.gencat.cat/ca/ambits/desenvolupament-rural/sigpac/mapa-cultius
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correctly or classified as double crops, which validates the applicability of the algorithm to our 

dataset.      

 

Figure 12: Crop type classification according to the NDVI peak detection algorithm for the three most 

common crop types. 

 

The irrigation mapping algorithm proceeds as follows: For each irrigated pixel in the IRRIGATION+ 

dataset, the irrigation water amounts are resampled to monthly time intervals. Next, fields from 

the experimental dataset and the SIGPAC dataset falling into the pixel are selected and duplicates 

are removed. The total irrigation water volume V is then distributed amongst those fields 

according to 𝑉  =  𝐴 ℎ  =  ∑ 𝐴𝑖
 
   ℎ𝑖  ,                                               

where A and h are the total area of the pixel and the monthly total irrigation in mm, respectively. 

The quantities Ai and hi denote the corresponding area and irrigation per field. Fields are assigned 

an irrigation weight wi depending on the crop type, the month and whether the field is irrigated 

or not. This weight determines the amount of irrigation allocated to each field as ℎ𝑖   =
 𝑉 𝑤𝑖 

∑ 𝐴𝑗
 
  𝑤𝑗

 . 

For simplicity the following weights were chosen: wi = 0 for all non-irrigated fields and for all winter 

and summer cereals outside their growing season; wi = 1 for all irrigated fields with summer or 

winter cereals within their respective growing season; wi = 0.5 for all irrigated fields with fruit trees 

or forages. Ideally, these weights should be calibrated with in-situ irrigation data, but this was 

beyond the scope of this project as such validation data was not available.  
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Fig. 13 depicts the total annual irrigation estimated via our mapping procedure for each year 

within the 2017-2020 period. These values are consistent with the originally retrieved per-pixel 

values, but equally underestimate total irrigation compared to district-scale reference data (see 

Zappa et al., 2021). Interestingly, our field-mapping approach shows greater differences in 

irrigation between crop types in different years than the original data. Winter wheat – and to a 

lesser extent, winter barley – were irrigated with far smaller amounts of water on average in 2018 

compared to other years. As that year saw heavy rainfall in April and May, we would expect less 

need for irrigation of the winter cereals, while maize should not be affected by this, since its 

growing season doesn’t start until June/July.    

 

Figure 13: Total annual irrigation for different years in the observed period, colored by crop type. 

 

As a next step, the impact of the irrigation amounts on crop yield was investigated. As can be seen 

from Fig. 14, the total annual irrigation has no measurable effect on the amount of crop harvested 

at the end of the season (pearson correlation not statistically significant for any of the crops). This 

might be due to the fact that the majority of the parcels in our dataset lie within the Urgell 

irrigation district, in which farmers predominantly utilize flood irrigation to water their crops. This 

system is characterised by fewer irrigation events with large amounts of water (which are difficult 

to precisely control), compared to drip or sprinkler systems. Numerous fields in the Urgell district 

furthermore feature drainage systems, resulting in surface runoff which is not considered in the 

SM_Delta method and thus leads to a likely underestimation of irrigation. Taken together, these 

caveats suggest that irrigation timing might play a bigger role for improving crop production in this 
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region and will be investigated in the coming months (as part of the demonstration case 3: 

irrigation advisory tool).  

 

Figure 14: Total annual irrigation and yield at harvest for the three dominant crops. 

 

To validate the irrigation amounts and timings that have been extracted with our newly developed 

irrigation mapping algorithm, they will be used as inputs to crop growth models and their output 

compared to the observed yield.  
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.1.4 Potential to give early indicators on yield for sugar beets for food processing stakeholders 

This science case focuses particularly on supporting the food processing industry in planning and 

logistics. We will predict the expected yield of sugar beets at NUTS2 in the Netherlands which is 

the area in which the Cosun Sugar beet Company is active. We will also include sugar beet yields 

at the NUTS3 and field level from the Czech Republic. Yield of sugar beets is not only the tonnes 

per hectare, but the amount of sugar in the beet is also of high interest to the farmer and food 

processor. Therefore, in this case, we will investigate the relation between the available variables 

in the experimental datasets and sugar content in the beets provided by the farmers in the 

Netherlands and the Czech Republic. This will address one of the current science questions still 

open, if there is potential in predicting sugar content in beets with EO data. 

Within this science case, two different crop growth models—Daisy and Hermes—were used at the 

field level for the experimental site of Polkovice farm in the Czech Republic (Fig. 15). Both models 

are used to test the accuracy of yield prediction at the field level with various weather or climate 

predictions. The amount of yield for sugar beet was observed from 2019 – 2023 at small 

experimental plots (at large experimental plots, the sugar beet was grown only for one year - 2021, 

according to the sowing practice). 

 

Figure 15: Polkovice farm site with small experimental plots (36,5 x 52 m) and large experimental plots 

(252 x 150 m). 

Daisy is a 1-dimensional agroecosystem model that, in brief, simulates crop production, crop yield, 

and water and nitrogen dynamics in agricultural soil based on information on management 

practices and weather data. The model can be viewed as an ensemble of processes, and to apply 
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the model, the process models must be initialized and parameterized (Abrahamsen, Hansen, 

2000). Input data for the Daisy model create 1. climate data – temperature, global radiation, 

precipitation, potential evapotranspiration, and groundwater level. 2. management and plant 

information – soil tillage, fertilization, irrigation, sowing, and harvest, species, and in-situ 

phenology.  

The observed and subsequently simulated yield values are recalculated as dry matter in tons per 

hectare (for both Daisy and Hermes). The accuracy of the models is described with mean bias 

errors (MBE) and root mean square errors (RMSE); the MBE moved in 0 – 2.2 t/ha, and RMSE 

moved in 4.1 – 5.4 t/ha (Tab. 4). The biggest difference between observed and simulated is visible 

for the Daisy and Hermes models in 2019, where the actual yield was relatively low, and both 

models overestimated the amount of yield (Fig. 16, 17). For the other years (2020-2023), both 

models underestimate the yield (the Daisy model is slightly more intense), but this underestimate 

is acceptable in the case of sugar beet. Both models were calibrated according to all phenological 

data, and the current parameter settings for sugar beet best represent the climatic and 

pedological conditions in experimental site Polkovice.   

 

 

Figure 16: The observed and simulated yield (dry matter, t/ha) of sugar beet on Polkovice farm using 

Daisy model. 
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Table 4: Statistical values (MBE – Mean Bias Error and RMSE – Root Mean Square Error) for sugar beet 

using Daisy and Hermes models in dry matter (t/ha). 

  Daisy Hermes 

 

MBE 

 t/ha 

RMSE 

 t/ha 

MBE 

 t/ha 

RMSE 

 t/ha 

Sugar beet 0 5.4 2.2 4.1 

 

The HERMES model belongs among the widely used, easily accessible and well-documented crop 

growth simulation models (e.g. Kersebaum, 2008; Palosuo et al., 2011). It is a process-oriented 

model for estimating development and growth of the field crops, soil water balance and the 

dynamics of nitrogen for arable land. The benefit of using HERMES is the ability to work with a 

relatively small amount of input data sets that are ordinarily available at the farm level and that 

take into consideration plant growth, N-uptake, the process of net mineralization, the 

denitrification and transport of water and nitrate (Kersebaum et al., 2011). The sub-model for crop 

growth was developed on the basis of the SUCROS model (van Keulen et al., 1982). 

According to Kersebaum (2011), field capacity, wilting point and porosity may either be provided 

directly or applied from the stone content, texture and bulk density classes by German soil 

taxonomy. The input data can be divided into the following three parts: weather data, soil 

information and management data. Individual parameters entered into the model are obtained 

from soil and meteorological measurements including data about global solar radiation, air 

temperature (average, minimum and maximum), air humidity, wind speed, precipitation and 

tillage. Further, data of harvest, pre-crop and initial conditions are used to launch the model. The 

Penman-Monteith approach for estimating reference evapotranspiration is used (Allen et al., 

1998, Monteith, 1965). The dynamics of soil water is derived from a simple capacity approach. 
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Figure 17: The observed and simulated yield (dry matter, t/ha) of sugar beet on Polkovice farm using 

the Hermes model. 

The first step was to train both models. Specific weather or climate forecasts will be used to test 

both models' yield predictions in the following steps. We used the M&Rfi (Rötter et al. 2011), a 

single-site weather generator, and an improved version of Met&Roll (Dubrovsky et al., 2000, 

2004). M&Rfi was trained for the Polkovice farm to calculate various weather forecasts to test the 

accuracy of yield predictions by both models (Daisy and Hermes). We will use four different types 

of prediction in monthly time steps from March to July. The first version will use only observed 

weather data; the second version will use the outputs from M&Rfi with weather data, which will 

be calculated with random variability; the third version will use again the outputs from M&Rfi with 

weather data, which will be calculated on the base of long term averages; the last version will be 

based on real seasonal forecast which will be used as input for M&Rfi to simulate the weather 

forecast. This approach allows us to evaluate the accuracy of yield prediction in different time 

steps before the harvest and also with different weather/climate predictions. 

Both models (Daisy and Hermes) are calibrated with in-situ data observed properly during the 

whole vegetation season in each year (including e. g. detailed phenological observations, 

information about soil and soil moisture properties and weather conditions). Accurate modeling 

at the field level then allows us to compare the modeled values with remote sensing data (e.g., 

Leaf Area Index - LAI) and verify the correct use of RS data. Further work with RS data must, 

therefore, be preceded by precise modeling at the field level with detailed knowledge of the input 
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site conditions. For this reason, the first simulations were carried out in the Czech Republic, where 

we had good-quality data for the field level together with other parameters (e.g., detailed 

information about phenological phases during vegetation periods, which helped to refine the 

modeling), without exact modeling would not be sufficient. Modeling at the field level can then 

be compared not only with RS data but also with spatial modeling, which we are able to do in the 

Czech Republic. There, we have sufficient data not only at the field level but also long enough 

series for modeling at the regional level (NUTS3). 

Besides the crop growth models (Daisy and Hermes), we also used an optimized neural network 

for the prediction of yield for sugar beet on the NUTS3 level within the area of the Czech Republic. 

The outputs are available online (only in the Czech language) at the website www.vynosy-plodin.cz 

in weekly time step (not only for sugar beet but also for other crops such as spring barley, winter 

wheat, winter rape, maize, oats, and rye).  

40 potential input characteristics were selected for yield prediction. In addition, data for the 

period 2000 – 2018 are available from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) carried by the Terra satellite, which captures 250 m resolution of the Earth's surface in a 

daily step. 

For final yield prediction, various predictors were used – vegetation indices, soil water index (SWI), 

evaporative stress index (ESI), and various outputs from the model SoilClim.  

According to the vegetation indices the NDVI, EVI, and EVI2 were used.  

SWI quantifies the soil moisture status in different soil depths. The index value is calculated based 

on an algorithm based on an infiltration model describing the relationship between Surface Soil 

Moisture (SSM) and soil moisture profile as a function of time (Wagner et al., 1999). The SSM used 

for the SWI calculation is obtained from the ASCAT sensor on board the MetOp-A and MetOp-B 

satellites, for daily values are used for the calculation. The resulting daily SWI data is then provided 

as part of the service Copernicus. Weekly averages of SWI are then used for the actual prediction. 

Excluded from the calculation are areas of water, permafrost and snow cover.  

The ESI (Evaporative Stress Index) expresses the time-standardized anomaly of the ratio of the 

current and reference evapotranspiration (ETa/ETo). The determination of ETa is performed using 

a diagnostic model ALEXI (Atmosphere-Land Exchange Inverse model), which has a two-source 

(soil and vegetation) energy balance model. In the framework of the present methodology, the 
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surface temperature measured for the ALEXI model was chosen. MODIS sensors carried by the 

Aqua and Terra satellites with a spatial resolution of 0.05° (i.e. 5 km at the equator). Other 

necessary input data are meteorological variables from 2 m above the surface (temperature, 

pressure and humidity and wind speed), for which the CFSR (Climate Forecast System Reanalysis) 

was used. Additional data is albedo (MODIS-Terra - required for the determination of the 

element's radiation balance, including heat flux to the soil) and approximate aerodynamic surface 

roughness based on height vegetation. 

The quantification of the individual components of the water balance using the SoilClim model is 

a significant input for yield forecasting, as it allows the inclusion of the water stress factor, 

different soil and terrain conditions and also complements the satellite information with 

information from ground stations in a relatively reliable way.  The SoilClim model, which was 

developed in the framework of the cooperation between the Institute of Agrosystems and 

Bioclimatology at Mendel University in Brno and the present Institute of Global Change Research 

of the CAS, v.v.i. and other institutes, was used to determine soil water supply for yield prediction 

purposes (Hlavinka et al., 2011). The software has a modular structure, with the key parts being 

input meteorological data in daily time steps, reference evapotranspiration, snow cover model, 

vegetation, and soil parameters.  

For sufficient robustness in estimating crop yields, this methodology works with two procedures 

to derive the functional relationship between the predictors and crop yields, which are then used 

in the aggregate model ensemble.  

The first part creates the neural network modeling. The yield forecast with neural network is done 

in weekly steps, starting from the 13th week of the year. Separate neural networks were created 

for each week of the year, each crop, and each territorial unit (NUTS3 region). Each neural 

network, therefore, solves one specific task, e.g., the prediction of sugar beet yields for the NUTS3 

in week 20. The cumulative values of the selected characteristics were used as inputs from data 

for the week of the year (e.g., for the week 20 prediction, the values for weeks 1 to 19 are known). 

The values of yields in a given year were used as output. The patterns thus generated were 

transmitted to the neural network, of which ¾ were used to learn the network and the rest to test 

the network's usability. For yield prediction, 50 networks were trained for each variant (NUTS3, 

crop, week), and 30 networks with the best prediction ability were selected for generating yield 
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estimates. The result of the prediction is the average, 5th and 95th percentile of the results from 

the selected 30 networks. 

The next part creates linear models. Remote sensing data were used as a predictor data from the 

MODIS sensor carried by the Terra satellite, which are available for the study area in the time 

series from the year 2000. From the original daily image data with global coverage in 250 m spatial 

resolution, weekly NDVI and EVI2 vegetation index data were prepared as maxima per week and 

aggregated only for the arable land of the given spatial unit (NUTS3). The single linear regression 

was used because a short time series of actual yield was available (incomplete data series since 

2000). Pairs of the selected vegetation index values and the actual yield are entered into the 

forecasts for a given NUTS3. From the weekly data, suitable continuous periods are selected to 

indicate the course of the season (none of the weeks between the first and the last selected are 

omitted), for which the values from each week are averaged into a single value. Selection of the 

most appropriate period, for which the observed index values are most indicative of the 

subsequent level of yields, is based on comparing the predictive ability of all possible linear 

models, and a specific analysis was carried out using a 'leave-one-out' procedure. 

To avoid significant errors in a model, using multiple models and considering some combination 

of these models as the final estimate weighted average is appropriate. In our case, we have two 

models. The final forecast of yields is presented as the result based on the best linear model and 

the average of the ensemble of neural networks for a given date, as the average of the two models. 

Thus, both models weigh one-half. 

The website provides various outputs about yield prediction for sugar beet. Firstly, users can check 

the yield prediction (Fig. 18, left side) in tons per hectare in the weekly time step and compare it 

with prediction reliability in percent (Fig. 18, right side). The yield prediction could also be 

compared with deviation from the average yield of the previous year (Fig. 19, right side) or with 

observed and estimated drought impacts on yield (Fig. 20, right side).      
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Figure 18: The real yield prediction for sugar beet in tons per hectare on the left side. With prediction 

reliability in % on the right side. 

 

 

Figure 19: The real yield prediction for sugar beet in tons per hectare on the left side. With deviation 

from the average yield of the previous year in % on the right side. 
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Figure 20: The real yield prediction for sugar beet in tons per hectare on the left side. With estimated 

drought impacts on the expected yield during the vegetation season on the right side. 
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2. Societal Impact 

.2.1 Subfield and field-level yield forecasts with lead time of at least 4 months including several 

crops (CG-A)  

The subfield and field-level forecats were prepared at site Polkovice (Fig. 15) for three main crops – 

winter wheat, winter rape and spring barley at large experimental plots (252 x 150 m). The accuracy 

of the subfield and field level yield forecasting is based on a good-quality input data and all specific 

inputs which influnced the vegetation season (e.g. pests, diseases, specific management inputs) and 

finally the yield in each year. All these specific information were collected at the mentioned site for 

large experimental plots were given crops were grown since 2019. For the testing of yield prediction 

accuracy the crop growth models were used – Daisy and Hermes (details in chapter 0.1.4 above).    

For winter wheat and winter rape the yield data are missing for two specific years (2020 and 2021) 

because of the original crop has been replaced by spring wheat (in case of winter wheat in 2021) and 

by soya (in case of winter rape in 2020). Nevertheles the Daisy model can predict the  winter wheat 

yield and reflect local conditions sufficiently (Fig. 16) and the expected error is expressed by RMSE 

(Root Mean Square Error) and MBE (Mean Bias Error) (Tab. 5) moving in -1.6 t/ha (MBA) and 2.7 t/ha 

(RMSE). The visible difference in observed and simulated yield in 2019 is caused by vole who destroyd 

the whole yield, still the models reflect given conditions and predict the yield without this disturbance.  
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Figure 16: The observed and simulated yield (dry matter, t/ha) of winter wheat on Polkovice farm using 

Daisy and Hermes model.   

Table 5: Statistical values (MBE – Mean Bias Error and RMSE – Root Mean Square Error) for given crops 

using Daisy and Hermes models in dry matter (t/ha). 

 Daisy Hermes 

 

MBE 

 t/ha 

RMSE 

 t/ha 

MBE 

 t/ha 

RMSE 

 t/ha 

Winter wheat -1,6 2,7 5,7 6,0 

Winter rape -0,2 0,5 4,3 4,4 

Spring barley -1,9 2,7 5,0 5,3 

 

For other crops (winter rape and spring barley) still the Daisy model can evaluate the given condition 

better (Fig. 17 and 18) according to the Hermes model (since the values of RMSE and MBE are lower 

for Daisy model, Tab. 5). In the future the accuracy of the yield prediction will be further tested using 

various types of meteorological forecats.  

  

  

 

 



Impact Assessment Report v2.0 YIPEEO: Yield Prediction and Estimation 
using Earth Observation 

Issue 2.0 

Date 21 February 2025 

 

41 

 

Figure 17: The observed and simulated yield (dry matter, t/ha) of winter rape on Polkovice farm using 

Daisy and Hermes model.   

  

 

Figure 18: The observed and simulated yield (dry matter, t/ha) of spring barley on Polkovice farm using 

Daisy and Hermes model.   

For yield prediction not only the crop growth models could be used. On the NUTS4 level we also used 

the neural networks and linear models for given crops and published the outputs online on website 

www.vynosy-plodin.cz. The detailed methodology is described in chapter 0.1.4. The yield prediction 
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was calculated for the period 2017-2024 and is updated every once a week (always on Monday 

afternoon when the meteorological data are download and evaluated from the last 7 days).   

For each crop (winter wheat, winter rape and spring barley) the current prediction is calculated (based 

on described methodology) and additional information are added, such as the real amount of yield 

(the values are added during the vegetation season since the data are displayed by farmers), prediction 

realibility (based on estimation uncertainty in percentage), deviation from the average yield in the 

previous year, deviation from the average yield in the last 3 years, estimated drought impacts (as a 

factor whit high impact on the final yield) and the percentage of harvested areas (Fig. 19).    

All the maps can be download with additional maps and information (such as 5 districts with the 

highest predicted yield and 5 districts with lowest yield predicted in given week etc.).  

 

Figure 19: Example from vegetation period 2024 for winter wheat from the end of August when all the 

fields were harvested. The bigger map display the yield prediction, 6 small maps desribe the additional 

information (the real yield, prediction realibility, deviation from the average yield in the previous year, 

deviation from the average yield in the last 3 years, estimated drought impacts and the percentage of 

harvested areas.   

 

At a workshop in February 2024, organized as part of the Yipeeo project activities, with farmers and 

stakeholders, the questionnaire survey revealed that farmers were sceptical about the yield forecast. 
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The uncertainty of the forecast, the effects of a large number of elements and the general inability to 

predict yield were often cited as reasons for not using yield forecasting. However, website traffic 

suggested tens and in some periods hundreds of visits per week (Fig. 20). 

 

Figure 20: Number of active visitors of the website www.vynosy-plodin.cz during the year 2024. 

 

.2.2 Retrospective yield prediction on different spatial scales level to quantify yield anomalies 

(TUW-RS) 

1. Goals: 

The goals of this demonstration case are: (1) To quantify yield losses before or shortly 
after harvest for compensation payments (insurance or nation agencies) on different 
spatial scales. As yield losses are a sensitive information we compare here the 
accuracies of models predicting yield at field scale and aggregate it to NUTS4 scale and 
a model predicting directly at NUTS4 scale. (2) Evaluate the impact of the lead time on 
different spatial scales. Here we also focus on field scale and NUTS4 scale. 

2. Data:  

For this demonstration we used the reference crop yields for winter wheat, spring barley, 
and maize in Czechia. This selection was based on the fact, that these crops are among 
the most cultivated crops in Europe and the data basis for Czechia ranged from field level 
to NUTS2 level. On field level, the data from the Polkovice farm and the Rostenice farm 
was used. The data from the Polkovice farm includes 32 samples for winter wheat, 40 
samples for maize, and 40 samples for spring barley. Rostenice farm is significantly larger 
and includes 323 samples for winter wheat, 501 samples for maize (green maize and grain 
maize), and 448 samples for spring barley. For both farms the data covers the years 2016 
to 2022. The fields from these farms are located in three different NUTS3 regions (NUT 
IDs: CZ0643000000, CZ0646000000, CZ0713000000).  Based on the findings from 
previous tasks predictors with a high predictive power were selected. These were ERA5 

https://www.vynosy-plodin.cz/
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SWI, ERA5 radiation, ERA5 radiation and the Sentinel-1 CR as well as the EVI derived from 
Sentinel-2.  

The EO based predictors were available on field scale and aggregated to the NUTS4 level. 
Due to the coarser spatial resolution of the meteorological variables, the closest ERA5 
grid cell for the centroid of the NUTS regions was identified.  

Figure 1: Yield anomalies for the years 2016-2022 for Winter Wheat and Spring Barley for the NUTS 
region CZ064000000. 

Figure 1 illustrates the yield anomalies for the NUTS4 region CZ064000000 for winter 
wheat and spring barley and the years 2016-2022. For the years 2016-2019 both crops 
show negative anomalies, whereas for the years 2020-2022 both crops show positive 
anomalies. However, for some years significant differences can be observed: In 2017 and 
2022 the anomaly for spring barley is much more extreme than for winter wheat. The 
increasing trend in yield can potentially be attributed to improvements in agricultural 
practices in recent years. The low yields in 2017 and 2019 on the other hand are most 
likely a result of below average precipitation in spring in these years. 

  

3. Methodology: 

The set-up of this demonstration case is closely aligned to task 3 and the associated 
deliverables ATB and product validation report. We used a Gradient Boost Regressor and 
a randomized grid search to identify the best parameters for the yield prediction models. 
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In the end, a GRU model with 250 estimators, a maximum depth of 3, and a learning rate 
of 0.025 was used. For the validation of the model, a leave one year out cross validation 
was used. Distinct models were trained per crop type and per lead time. The experiment 
for the estimation of yield losses was carried out with the data from the Rostenice and 
Polkovice farm and the NUTS4 region CZ0640000000. Due to the low number of regions 
on NUTS3/NUTS2 and national level, proper model training and testing was not possible. 
For this reason, no prediction was carried out on these scales.  

 

Figure 2: Workflow for the demonstration case illustrating the individual steps performed to achieve 

the results. 

4. Results: 

4.1. Quantification of yield losses on different 

spatial scales 
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Figure 3: Derived yield anomalies aggregated from field level predictions to NUTS4 level and directly 

predicted on NUTS4 level for Winter Wheat and Spring Barley, lead times 2 (upper row), and 4 (lower 

row), all for the NUTS4 region CZ0646000000. 

 

First, two approaches to estimate yield losses on NUTS4 level were compared. The first 
approach predicts yield on field level and then aggregates these predictions to NUTS4 
level to calculate the yield loss by subtracting the average yield of this crop. The second 
approach predicts directly the yield on NUTS4 level and then calculates the yield loss in 
the same way as for the first approach. This experiment was carried out for the lead times 
from 1-4 months. Figure 3 illustrates the retrieved yield losses for the two approaches for 
all years and the crops common winter wheat and spring barley exemplary here for the 
lead time 2 month and 4 months. As can be seen from the figure, the deviation between 
the actual yield loss and the estimated yield loss for approach 1 (prediction at field level 
and aggregation to NUTS4 level) is smaller in most cases. For winter wheat, this applies 
for all years except for 2018 and 2020 (for both illustrated lead times). For spring barley, 
the same applies for all years except for 2017 and 2022. It is also evident that the model 
for the NUTS4 level has the tendency to underestimate yield anomalies. Similar trends 
are also observed for the lead times 1 and 3 which are not illustrated here. 
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Figure 4: Comparison of error metrics of yield aggregated from field level predictions to NUTS4 level 

and directly predicted on NUTS4 level for Winter Wheat and Spring Barley, lead times 2 (upper row), 

and 4 (lower row), all for the NUTS4 region CZ0646000000. 

 

In addition, we calculated also the mean squared error respectively squared error for the 
two approaches. For the prediction on field level, we used the MSE over all fields within 
the NTUS4 region CZ0640000000. For the prediction directly on NUTS4 level the squared 
error was calculated between the predicted yield for this NUTS4 region and the reference 
yield. Figure 4 illustrates the achieved metrics for this. As can be seen, in this case the 
metrics for the prediction directly on NUTS4 level are significantly better for both crops, 
both lead times and all years. A more detailed interpretation of the results is provided in 
the last chapter. 

 

 

4.2. Yield prediction with different lead times on 
different spatial scales 

In a next step, the impact of the lead time on the yield prediction accuracy on 
different spatial scales was assessed in detail. This was carried out on  field level 
and on NUTS4 level, but this time no aggregation to NUTS4 level was performed. 
The analysis was done on sub-field level and field level for the crops winter 
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wheat, spring barley and maize and on NUTS4 level for winter wheat and spring 
barley only, as no data on maize yield was available. Figure 5 illustrates the 
achieved RMSE on field level and NTUS4 level. As can be seen from the figure, 
the differences between the lead times are marginal or significant depending on 
the crop type and level. For maize at field level, the RMSE increases significantly 
with increasing lead time. The same applies to spring barley at field level. Winter 
wheat shows an almost identical trend for the different lead times at field and 
NUTS4 level, where only a slight increase in RMSE can be observed with 
increasing lead time. The same applies to spring barley at field level, and the 
differences between the lead times are only marginal. 

Figure 5: RMSE on field level (left) and NUTS4 level (right) for different lead times and the crops 

Winter Wheat, Summer Barley, and Maize averaged over all years where data was available. 

The RMSE is the weighted averaged over all available years. 

 

In addition we also took closer look at the yearly performance for different lead 
times. This is illsutrated in Figure 6. As can be seen, the differences between the 
years are significant, especially for winter wheat. There are two years (2017 and 
2020) where the RMSE for lead time 1 is actually the highest. For spring barley, on 
the other hand, lead time 1 has the lowest RMSE in all years and lead time 4 has 
the highest RMSE in all years except 2016. 

Figure 6: RMSE on NUTS4 level for the crop Summer Barley and Winter Wheat and the lead 

times 1-4 for different years. 
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  Tables 1 and 2 summarize the achieved accuracy metrics for the different spatial 
scales. It can be seen that a lower accuracy was achieved on field level. For winter 
wheat and spring barley, accuracies are significantly lower for all lead times. Only 
for maize, accuracies for lead time 1 and 2 are close to the field level.  

  

Field Level 

Table 1: Summary of the achieved metrics for yield prediction on field level for the crops Winter Wheat, Spring Barley, 

and Maize and the lead times 1-4. 

Crop Lead 

time 

RMSE (t/ha) MAE (t/ha) PearsonR 

Winter 

Wheat 

1 

2 

3 

4 

2.02 

2.18 

2.27 

2.59 

1.80 

1.98 

2.06 

2.43 

0.17 

-0.30 

-0.07 

-0.11 

Spring Barley 1 

2 

3 

4 

1.39 

1.59 

1.60 

1.61 

1.15 

1.34 

1.37 

1.36 

0.22 

0.28 

-0.03 

0.05 

Maize 1 

2 

3 

4 

5.52 

5.58 

6.06 

5.97 

3.05 

4.03 

3.55 

3.73 

0.28 

0.14 

0.27 

-0.01 

  

NUTS4 

Table 2: Summary of the achieved metrics for yield prediction on field level for the crops Winter Wheat and Spring Barle 

and the lead times 1-4. 

Crop Lead 

time 

RMSE (t/ha) MAE (t/ha) PearsonR 

Winter 

Wheat 

1 

2 

0.97 

0.95 

0.77 

0.77 

0.15 

0.21 
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3 

4 

0.97 

1.00 

0.78 

0.81 

0.13 

-0.02 

Spring Barley 1 

2 

3 

4 

0.76 

0.83 

0.95 

0.96 

0.61 

0.68 

0.78 

0.78 

0.48 

0.46 

0.29 

0.17 

  

5. Discussion and conclusion: 

The outlined results indicate, that yield prediction on field scale is more challenging, than 
on regional (NUTS4 scale). A driving factors for this could be the higher variance of the 
yield on field scale that can not (fully) be explained by the used predictors. Other factors 
like soil types, nutrition supply, hail or pest related yield losses are not represented in the 
predictors but can have a high impact on field level.  Aggregated yield predictions from 
field level to NUTS4 level however have shown to give a good approximation of average 
yield on NUTS4 level and outperformed a prediction on NUTS4 level in most years. The 
main explanation for this difference is, that during the aggregation to NUTS4 level errors 
from under- and overpredictions on field level are averaged out. It must be taken into 
account that this is based on an analysis of only one NUTS4 region. A general statement 
if this approach is advantageous is thus difficult. With regards to the impact of the lead 
time, a general statement is also difficult. Only  spring barley on NUTS4 level showed in 
our analysis a clear trend with increasing RMSE with increasing lead times and lead time 
1 having the lowest RMSE in all years. For winter wheat, the differences between the years 
were so extreme that a general statement is not possible.  
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.2.3 Irrigation advisory tool (TUW-C) 

The aim of this demonstration case was to assess how the yield predictions, the irrigation 
information on the field scale and the irrigation estimation from Earth Observation data (Science 
Case 3) could be combined to develop an irrigation advisory tool that could be used by 
stakeholders. Ideally, it would alert them in time to potential yield losses due to low water 
availability and advise them on how to mitigate those losses through the application of irrigation.  

As a first step towards this goal, we assessed whether the machine learning model developed in 
Task 3 was able to correctly predict the yield differences between irrigated and non-irrigated 
fields in the Lleida and Madrid regions of Spain. As predictor variables, we extracted timeseries 
of Sig0/Sig40 VV, VH, and CR from Sentinel-1, as well as the calculated indices NDVI, EVI, NMDI, 
NDWI from Sentinel-2 and resampled them to a biweekly resolution. We established eight crop 
yield forecasts at different times before the harvest of each particular crop. Each of these 
forecasts are two weeks apart, starting at four months before harvest and ending at two weeks 
before harvest. These forecast times are denoted LT (lead time) 8 to 1, with LT8 meaning 8 times 
2 weeks before harvest, i.e. 4 months. The forecasts are always started at LT8, such that 
subsequent forecasts (and their training) can take the previous forecasts into account as 
additional predictor variables. We employed a machine learning model based on Extreme 
Gradient Boosting and optimized the hyperparameters with a randomized grid search.   

Figure 1: Predicted and reported yield for irrigated and non-irrigated fields of common winter wheat at 

different lead-times (in biweekly intervals). 

First, as the machine learning model developed in Task 3 was never tested on the data from the 
Lleida and Madrid regions before, we assessed how well it was able to predict yield at different 
lead times overall. Figure 1 compares the predicted yield with the reported yield for all fields in 
the testing set and clearly shows that the R²-score, corresponding to the explained variance of 
the data by the model, gradually increases as the forecasts move closer to the harvest, and that 
the forecasts already yield sensible results around 10 weeks (LT5) before harvest. Furthermore, a 
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visible distinction between irrigated and non-irrigated fields is established in the predictions and 
gets stronger as the harvest approaches.  

This effect is illustrated and quantified in more detail in Figure 2, which depicts the distribution of 
predicted yields for both irrigated and non-irrigated fields at different lead times, as well as the 
reported yields. At 4 months before harvest, the two distributions are fairly similar, but they drift 
apart continuously as the harvest approaches, with irrigated fields gradually being forecast to 
have increasing yields, whereas the forecasted yields of non-irrigated fields decline over time. It 
should be noted, however, that irrigated and non-irrigated fields already show some differences 
at the earliest lead time, before irrigation could have had any effect. This might be because many 
irrigated fields are clustered in the main irrigation districts and thus are not subject to the exact 
same environmental conditions as the fields that lack irrigation.  

Figure 2: Distribution of predicted yields for irrigated and non-irrigated fields of common winter wheat 

at different lead-times (in biweekly intervals). The reported yield is shown as a reference. Numbers 

above violin plots indicate the mean and standard deviation of the distributions.  

 

As such, we tried to further compare individual fields by finding spatial matches between irrigated 
and non-irrigated fields which are less than one kilometer apart. For such closely situated fields, 
we can safely assume that external conditions, such as soil properties, altitude or weather 
conditions, are identical or at least similar enough to make irrigation the main driver of any 
predicted differences in yield.  
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Figure 3: Comparison of predicted yield for pairs of non-irrigated fields and their closest irrigated fields 

of common winter wheat at different yield times. The marker types and colors correspond to different 

years. 

 

Figure 3 compares the predicted yields for these spatially matched pairs at four different lead 
times, corresponding to four, three, two and one months before harvest, respectively. The 
datapoints are colour coded by year to allow us to connect the effects of irrigation with the 
weather conditions in particular years. First, we should note that four months before harvest, 
these matched fields do look to be comparable, as their predictions all cluster around the 1:1 
line, meaning that the predicted yields of an irrigated field and its nearest non-irrigated field are 
close to identical. Surprisingly, this changes dramatically already a month later (LT6), when the 
vast majority of matches show a much higher predicted yield for the irrigated fields than their non-
irrigated neighbours. After LT6, this picture hardly changes, suggesting that irrigation is most 
important three months before harvest, which approximately corresponds to the booting, 
heading and flowering stages of winter wheat. Furthermore, different patterns emerge for 
different years. In 2019, 2021 and 2022, the yield distribution of non-irrigated fields is quite narrow 
and concentrated around relatively low yields, while the matching irrigated fields vary widely in 
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their yield predictions (but being almost always higher than the non-irrigated fields). In 2018 and 
2020, however, the yield predictions of the field pairs are more comparable and for 2018 
especially, predicted yields are particularly high for both types of fields. This result is consistent 
with the findings from Science Case 3 (Figure 13), namely that the total irrigation water amounts 
for winter wheat were particularly low in 2018. As that year was characterised by heavy rainfall in 
April and May, crops showed positive yield anomalies regardless of irrigation.  

 

Figure 4: Predicted yield over time for irrigated and non-irrigated fields of common winter wheat for 

different years. The lines and shaded regions represent the mean and 95% confidence intervals, 

respectively.  

 

Based on these results, we propose that an irrigation advisory tool could be implemented by 

tracking how yield predictions based on earth observation of vegetation and soil moisture 

parameters change over time and/or how they diverge for comparable (e.g. spatially close) fields. 

As we illustrate for the average field in different years in Figure 4, farmers could be alerted when 

their fields’ yield prediction drops by more than a particular threshold value between two 

consecutive lead times. They could then be advised to irrigate their fields (more). How much 

irrigation should be applied could be deducted from extracting the irrigation water amounts of 

spatially close irrigated fields with the tools developed in Science Case 3. However, we should 

note that this downscaling approach for irrigation water amounts has not been validated yet and 

should be subject to a validation study before being used in an advisory tool. Alternatively, a 

process-based crop model could be employed to find the crop’s current irrigation water needs. 
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Such an approach was envisioned in this demonstration case but was found to be infeasible in 

its timeframe. 

.2.4 Fertilization advisory tool (CG-RS) 

Fertilization is one of the key field management practices which farmers can use to 

improve/stabilize yield quantity and/or quality. Each fertilizer application is the result of three 

tightly interconnected questions – when, where and how much fertilizer to apply. Nitrogen differs 

from other nutrients applied: it is the nutrient with the highest impact when applied during 

vegetation period and the total amount is usually distributed to several applications. The nutrient 

dosage and its spatial distribution are inferred from two indicators: 1) expected yield and 2) 

operational dosage adjustment based on plant conditions.  

In this demonstration case, we focus on the spatial distribution of the basal nitrogen dosage at the 

subfield level based on yield spatial variability. In the yield zonation theory, the past information 

on yield spatial distribution can be used to identify subfield fertilization zones (Blackmore et al., 

2003). Recently, the best source of information on yield spatial distribution at the subfield level 

are the data acquired by the harvest machines. Its main disadvantages are the historical scarcity 

and missing standardization of its processing (Vega et al., 2019; Arsenoaia et al., 2023). However, 

the field data can be substituted (to certain extend) by time-series of EO products such as 

enhanced vegetation index series used by Řezník et al. (2020) and Charvat et al., (2021). Then the 

potential yield zones of individual fields are typically derived from VI(s) corresponding to selected 

crop growth stages (CGS) aggregated across several years and normalised by a field’s 

mean/median value. The map of potential yield zones for the whole Czech Republic was calculated 

by this approach and is available from a map server. The approach how to use such a map to setup 

fertilizer dose can be divided into two scenarios 1) supporting the high productivity zones or 2) 

equalizing yield – supporting the low productivity zones.  

As the existing map suffers from some sort of temporal instability during certain years, we 

therefore inspected temporal and spatial correspondence of the EVI index and crop yield data. A 

different approach to relativize individual field’s values of EVI and yields was tested on an 

extended sub-field level data available within the YIPEEO project. 

Data 

For this demonstration case we used sub-field level crop yield maps at the Rostenice farm in the 

Czech Republic. The subfield level data span years 2017 – 2022 and are available only for selected 

fields due to availability and processing requirements of raw harvester data. The yield data 

represent crops rapeseed, spring barley, green maize, corn maize, winter wheat, winter barley, 

but due to lower spatio-temporal coverage of individual crops, only rapeseed, spring barley and 

corn maize were further analysed (Table 1). 

The preprocessing of raw harvester data involves mainly outlier detection, filtration and spatial 

interpolation as described in Řezník et al. (2020). The resulting sub-field yield maps were produced 

in 10 m spatial resolution spatially corresponding to grid of the EO data used. 

https://www.agrihub.cz/mapy/?hs-x=1734914.2640131689&hs-y=6438259.95333698&hs-z=8.726988816428277&hs-lang=en&hs-visible-layers=OpenStreetMap%3BLPIS%20-%20DPB%3Bproduk%C4%8Dn%C3%AD%20zony%202020%3Bproduk%C4%8Dn%C3%AD%20zony%3BPodkladov%C3%A1%20vrstva%20erozn%C3%AD%20ohro%C5%BEenosti%20-%20hranice%20DZES%3BKatastr%20nemovitosti&composition=https%3A%2F%2Fwww.agrihub.cz%2Frest%2Ffzadrazil%2Fmaps%2Fvynosovy_potencial&map-swipe=disabled&app=OZkZPv4I7Q
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All Sentinel-2 images available for the vegetation seasons of respective years were resampled to 

10 m spatial resolution. The EVI index was used as descriptor of vegetation development. 

 

 

Table 1: Number of fields with sub-field yield data available for Rostenice farm. 

 rapeseed s. barley Green 

maize 

Corn maize w. wheat w. barley 

2017 1 2 4 1   

2018 3 5  1   

2019 5 3   1  

2020  5  2 1 1 

2021 3 1  5   

2022  2 3 3  3 

 

Methodology 

The task which the concept of potential yield zones is aiming for, detection of areas with 

statistically high/low values of the observed phenomenon, can be also analysed in the GIS using  

the “hot-spot” analysis. This analysis uses the Getis-Ord GI* statistic - GO (Getis & Ord, 1992) that 

evaluates observed values by locally calculated Z-score values (EQ). 

𝐺𝑖
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2
]
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 (1) 

where xj is the attribute value for feature j, wi,j is the spatial weight between features i and j, n is 

equal to the total number of features and: 

𝑋 =
∑ 𝑥𝑗
𝑛
𝑗=1

𝑛
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We adopted this method to calculate the GO both for real yield values and for EVI values. Firstly, 

we analysed the spatial distribution of yield values within a field, as some prior knowledge of it’s 
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spatial correlation is required to calculate GO. Individually for each combination of field, year and 

crop we calculated variogram of yield values and used the it’s range value to parametrize the GO 

calculation. To explore the effect of GO we also calculated mean-normalized value of yield and EVI 

together with GO. The GO_EVI statistic was than correlated with GO_yield and similarly EVI_norm 

was correlated with Yield_norm. Then the temporal behaviour of EVI statistics and corresponding 

correlation was analysed. 

 

Results 

The yield variance was calculated in two steps. In the first step the average maximum distance 

threshold of variance growth was estimated to be 250 m. In the second step effective range of 

individual variograms was extracted (Figure 1). Then the median value of 194 m which 

corresponds approximately to 389 neighbouring pixels was used to calculate GO statistic (Figure 

2). 

 

Figure 1: Example variogram of spring barley yield values derived from yield map. Okomentoval(a): [GU11]: probably numbering has to be 
changed in respect to the whole document 
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Figure 2: Spatial visualization of Getis-Ord GI* statistic (GO) calculated from yield and EVI layers. Gray 
scale image represents corn maize yield in 2022. 

Both the EVI_norm and GO_EVI show distinct correlation peaks. In case of spring barley (C1320) and 
rapeseed (I1111) the highest correlation can be usually observed between very end of May and 2/3 
of June, whereas in case of corn maize (C1500) the high correlation values are more often between 
second 2/3 of August and first week of September (Figures 3 - 6). 

 

Figure 3: Timeseries of mean-normalized EVI index (EVI_norm) and it’ s Pearson correlation coefficient 

with mean-normalized yield values (rapeseed). EVI_norm is represented by median values on individual 

S2 acquisition dates. 
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Figure 4: Timeseries of EVI Getis-Ord GI* statistic (GO_EVI) and it’ s Pearson correlation coefficient with 

yield GO values (rapeseed). GO_EVO is represented by median values on individual S2 acquisition dates. 

 

Figure 5: Timeseries of EVI Getis-Ord GI* statistic (GO_EVI) and it’ s Pearson correlation coefficient with 

yield GO values (corn maize). GO_EVO is represented by median values on individual S2 acquisition 

dates. 



Impact Assessment Report v2.0 YIPEEO: Yield Prediction and Estimation 
using Earth Observation 

Issue 2.0 

Date 21 February 2025 

 

60 

 

 

Figure 6: Timeseries of EVI Getis-Ord GI* statistic (GO_EVI) and it’ s Pearson correlation coefficient with 

yield GO values (spring barley). GO_EVO is represented by median values on individual S2 acquisition 

dates. 

Discussion 

Both EVI statistics showed similar pattern of close correlation with corresponding yield statistics. The 

closer correlation in June for spring barley and rapeseed and in August for corn maize broadly 

corresponds with other studies reporting close correlation according to CGS (BBCH 40-50). The GO_EVI 

statistic usually reached closer correlation peaks than the EVI_norm version. That is suggesting that 

the more spatially constrained normalization technique could lead to more precise prediction of 

relative yield distribution within individual fields. This difference might be related to substantially 

stronger transformation of the mutual relationship in case of GO statistic. The scatter plots of GO 

statistics could indicate some clustering, which might be interesting to analyse with respect to its 

localization in real space and potentially with respect to environmental variables. Second and more 

urgent question is the method of temporal aggregation together with data source used. The previous 

studies usually aggregated the data by calculating average/median value of EVI index across years and 

crops but respecting the CGS. The effect of methods similar to those used for composing cloud-free 

mosaics could be evaluated. 
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